NESTED QUANTIFIERS

Section 1.5

REVIEW EXERCISES

Translating the following sentences in logic:

- Every freshman at the College is taking some Computer Science course.
- All lions are fierce.
- Some lions do not drink coffee.
- Some fierce creatures do not drink coffee.

SECTION SUMMARY

- Nested Quantifiers
- Order of Quantifiers
- Translating from Nested Quantifiers into English
- Translating Mathematical Statements into Statements involving Nested Quantifiers.
- Translated English Sentences into Logical Expressions.
- Negating Nested Quantifiers.

NESTED QUANTIFIERS

• Nested quantifiers are quantifiers where one quantifier is within the scope of another.

Example: "Every real number has an inverse" is

 $\forall x \exists y(x + y = 0)$

where the domains of x and y are the real numbers.

We can also think of nested propositional functions:

 $\forall x \exists y(x + y = 0)$ can be viewed as

 $\forall x \ Q(x)$ where Q(x) is $\exists y \ P(x, y)$ where P(x, y) is (x + y = 0)

NESTED QUANTIFIERS

Write the following statements in English, using the predicate S(x, y): "x shops in y", where x represents people and y represents stores:

- (a) $\forall y \ S(Margaret, y)$.
- (b) $\exists x \forall y \ S(x, y)$.

Solution:

- (a) Margaret shops in every store.
- (b) There is a person who shops in every store.

MORE EXAMPLES

Consider these lines of code from a Python program:

```
if (not(x !=0 and y/x < 1) or x==0):
    print (True)
else:
    print (False)</pre>
```

Express the code in this statement as a compound statement using the logical connectives \neg , \lor , \land , \rightarrow , and these predicates

```
E(x): x = 0

L(x, y): y/x < 1

A(z): "print z"
```

where x and y are integers and z is a Boolean variable (with values True and False).

MORE EXAMPLES

Suppose that the universe for x and y is $\{1, 2, 3\}$. Also, assume that P(x, y) is a predicate that is true in the following cases, and false otherwise: P(1, 3), P(2, 1), P(2, 2), P(3, 1), P(3, 2), P(3, 3). Determine whether each of the following is true or false:

(a) $\forall y \exists x \ (x \neq y \land P(x, y)).$ (b) $\forall x \exists y \ (x \neq y \land \neg P(x, y)).$ (c) $\forall y \exists x \ (x \neq y \land \neg P(x, y).$

Copyright (c) Pro

f. Jin-Xing Hao	

THINKING OF NESTED QUANTIFICATION

- Nested Loops
 - To see if $\forall x \forall y P(x, y)$ is true, loop through the values of x:
 - At each step, loop through the values for *y*.
 - If for some pair of *x* and *y*, *P*(*x*,*y*) is false, then ∀*x* ∀*yP*(*x*,*y*) is false and both the outer and inner loop terminate.
 - $\forall x \forall y P(x,y)$ is true if the outer loop ends after stepping through each *x*.
 - To see if $\forall x \exists y P(x, y)$ is true, loop through the values of *x*:
 - At each step, loop through the values for *y*.
 - The inner loop ends when a pair x and y is found such that P(x, y) is true.
 - If no y is found such that P(x, y) is true the outer loop terminates as $\forall x \exists y P(x, y)$ has been shown to be false.
 - $\forall x \exists y P(x,y)$ is true if the outer loop ends after stepping through each *x*.
- If the domains of the variables are infinite, then this process can not actually be carried out.

ORDER OF QUANTIFIERS

The order of the quantifiers is important, unless all the quantifiers are the same.

Examples:

- 1. Let P(x,y) be the statement "x + y = y + x." Assume that *U* is the real numbers. Then $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value.
 - Let Q(x,y) be the statement "x + y = 0." Assume that *U* is the real numbers. Then

 $\forall x \exists y \ Q(x,y)$

is true, and

 $\exists y \forall x \ Q(x,y)$

is false.

QUANTIFICATIONS OF TWO VARIABLES

Statement	When True?	When False
$orall x orall y P(x,y) \ orall y orall x P(x,y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x,y)$ is false for every y.
$\exists x \forall y P(x,y)$	There is an <i>x</i> for which <i>P</i> (<i>x</i> , <i>y</i>) is true for every <i>y</i> .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \\ \exists y \exists x P(x, y) \end{cases}$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y

QUANTIFICATIONS OF MORE VARIABLES

Let Q(x, y, z) be the statement "x + y = z." What are the truth values of the statements $\forall x \forall y \exists z Q(x, y, z)$ and $\exists z \forall x \forall y Q(x, y, z)$, where the domain of all variables consists of all real numbers.

Solution: Suppose that x and y are assigned values. Then, there exists a real number z such that x + y = z. Consequently, the quantifification

 $\forall x \forall y \exists z \ Q(x, y, z),$

which is the statement "For all real numbers x and for all real numbers y there is a real number z such that x + y = z," is true.

 $\exists z \forall x \forall y \ Q(x, y, z)?$

TRANSLATING MATHEMATICAL STATEMENTS INTO PREDICATE LOGIC

Example : Translate "The sum of two positive integers is always positive" into a logical expression.

Solution:

1. Rewrite the statement to make the implied quantifiers and domains explicit:

"For every two integers, if these integers are both positive, then the sum of these integers is positive."

- Introduce the variables x and y, and specify the domain, to obtain:"For all positive integers x and y, x + y is positive."
- 3. The result is:

 $\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0))$

where the domain of both variables consists of all integers

TRANSLATING NESTED QUANTIFIERS INTO ENGLISH

Example 1: Translate the statement

 $\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x, y)))$

where C(x) is "*x* has a computer," and F(x,y) is "*x* and *y* are friends," and the domain for both *x* and *y* consists of all students in your school. **Solution**: Every student in your school has a computer or has a friend who has a computer.

Example 2: Translate the statement

 $\exists x \forall y \forall z ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$

Solution: There exists some student none of whose friends are also friends with each other. (有个同学,他的朋友之间不是朋友)

TRANSLATING ENGLISH INTO LOGICAL EXPRESSIONS EXAMPLE

Example: Express the statement "If a person is female and is a parent, then this person is someone's mother" as a logical expression involving predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution:

- For every person x, if person x is female and person x is a parent, then there exists a person y such that person x is the mother of person y.
- *F*(*x*) to represent "*x* is female," *P*(*x*) to represent "*x* is a parent," and *M*(*x*, *y*) to represent "*x* is the mother of *y*."
- $\forall x((F(x) \land P(x)) \rightarrow \exists y M(x, y))$
- $\forall x \exists y ((F(x) \land P(x)) \rightarrow M(x, y)).$

TRANSLATING ENGLISH INTO LOGICAL EXPRESSIONS EXAMPLE

Example: Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."

Solution:

- 1. Let P(w,f) be "w has taken f" and Q(f,a) be "f is a flight on a."
- 2. The domain of w is all women, the domain of f is all flights, and the domain of a is all airlines.
- 3. Then the statement can be expressed as:

 $\exists w \; \forall a \; \exists f \; (P(w,f) \land Q(f,a))$

NEGATING NESTED QUANTIFIERS

Example 1: Recall the logical expression:

 $\exists w \,\forall a \,\exists f \, (P(w,f) \land Q(f,a))$

Part 1: Use quantifiers to express the statement that "There does not exist a woman who has taken a flight on every airline in the world."

Solution:

Part 2: Now use De Morgan's Laws to move the negation as far inwards as possible.

Solution:

 $\neg \exists w \ \forall a \ \exists f \ (P(w,f) \land Q(f,a))$

Part 3: Can you translate the result back into English?

Solution:

SECTION SUMMARY

- Nested Quantifiers
- Order of Quantifiers
- Translating from Nested Quantifiers into English
- Translating Mathematical Statements into Statements involving Nested Quantifiers.
- Translated English Sentences into Logical Expressions.
- Negating Nested Quantifiers.