LIST OF SYMBOLS

TOPIC	SYMBOL	MEANING	NOTES
	$\neg p$	negation of <i>p</i>	
	$p \wedge q$	conjunction of <i>p</i> and <i>q</i>	
	$p \lor q$	disjunction of p and q	
	$p \oplus q$	exclusive or of p and q	
	$p \rightarrow q$	implication <i>p</i> implies <i>q</i>	
	$p \leftrightarrow q$	biconditional of <i>p</i> and <i>q</i>	
	$p \equiv q$	equivalence of p and q	
LOGIC	T	tautology	
20010	F	contradiction	
	$P(x_1,\ldots,x_n)$	propositional function	
	$\forall x P(x)$	universal quantification of $P(x)$	
	$\exists x P(x)$	existential quantification of $P(x)$	
	$\exists !x P(x)$	uniqueness quantification of $P(x)$	
	•	therefore	
	p(S)q	partial correctness of S	
	$x \in S$	x is a member of S	
	x∉S	x is not a member of S	
	$\{a_1,,a_n\}$	list of elements of a set	
	$\{x \mid P(x)\}$	set builder notation	
	Ν	set of natural numbers	
	Z	set of integers	
	\mathbf{Z}^+	set of positive integers	
	Q	set of rational numbers	
	R	set of real numbers	
	[a,b], (a,b)	closed, open intervals	
	S=T	set equality	
	Ø	empty (or null) set	
	$S \subseteq T$	S is a subset of T	
	$S \subset T$	S is a proper subset of T	
	$\mid S \mid$	cardinality of S	
SETS	P(S)	power set of S	
SEIS	$(a_1,,a_n)$	n-tuple	
	(<i>a</i> , <i>b</i>)	ordered pair	
	$A \times B$	Cartesian product of <i>A</i> and <i>B</i>	
	$A \cup B$	union of A and B	
	$A \cap B$	intersection of A and B	
	A-B	difference of A and B	
	Ā	complement of A	
	$\bigcup_{i=1}^{n} A_i$	union of A_i , i=1,2,,n	
	$\bigcap_{i=1}^{n} A_{i}$	intersection of A_i , i=1,2,,n	
	$A \oplus B$	symmetric difference of A and B	
	א 0	cardinality of a countable set	
	C	cardinality of R	

TOPIC	SYMBOL	MEANING	NOTES
	f(a)	value of function <i>f</i> at <i>a</i>	
	$f:A \rightarrow B$	function from A to B	
	$f_1+\mathbf{f}_2$	sum of functions f_1 and f_2	
	$f_1 \cdot f_2$	product of functions f_1 and f_2	
	f(S)	image of set S under function <i>f</i>	
	$l_A(s)$	Identity function of <i>A</i>	
	$f^{-1}(x)$	inverse of f	
	f°g	composition of f and g	
		floor function of x	
	[x]	ceiling function of <i>x</i>	
	a_n	Term of $\{a_i\}$ with subscript n	
FUNCTION S	$\sum_{i=1}^n a_i$	sum of $a_1, a_2,, a_n$	
	$\sum_{\alpha \in S} a_{\alpha}$	sum of a_{α} over $\alpha \in S$	
	$\prod_{i=1}^n a_i$	product of a_1, a_2, \ldots, a_n	
	f(x) is $O(g(x))$	f(x) is big- O of $g(x)$	
	<i>n</i> !	n factorial	
	$f(x)$ is $\Omega(g(x))$	f(x) is big-Omega of $g(x)$	
	$f(x)$ is $\Theta(g(x))$	f(x) is big-Theta of $g(x)$	
	~	asymptotic to	
	$\min(x,y)$	minimum of x and y	
	$\max(x,y)$	maximum of x and y	
	~	approximately equal to	
	a b	<i>a</i> divides <i>b</i>	
	$a \nmid b$	<i>a</i> does not divide <i>b</i>	
	a div b	quotient when <i>a</i> is divided by <i>b</i>	
	a mod b	remainder when a is divided by b	
INTEGERS	$a\equiv b \pmod{m}$	a is congruent to b modulo m	
in (Theoline)	$a \not\equiv b \pmod{m}$	a is not congruent to b modulo m	
	Zm	integers modulo <i>m</i>	
	$(a_k a_{k-1}a_1 a_0)_b$	base <i>b</i> representation	
	gcd(a,b)	greatest common divisor of <i>a</i> and <i>b</i>	
	lcm(a,b)	least common multiple of <i>a</i> and <i>b</i>	
	$[a_{ij}]$	matrix with entries a_{ij}	
	A+B	matrix sum of A and B	
MATRICES	AB	matrix product of A and B	
	In	identity matrix of order n	
	\mathbf{A}^{t}	transpose of A	
	A∨B	join of A and B	
	A∧B	meet of A and B	
	A©B	Boolean product of A and B	
	$\mathbf{A}^{[n]}$	Boolean power of A	

TOPIC	SYMBOL	MEANING	NOTES
	$\mathbf{p}(\mathbf{r},\mathbf{r})$	number of r-permutations of a set with	
	P(n,r)	n elements	
	C(x,y)	umber of r-combinations of a set with n	
	C(n,r)	elements	
	$\binom{n}{r}$	binomial coefficient n choose r	
COUNTING	$C(n;n_1,n_2,,n_m)$	multinomial coefficient	
AND	p(E)	probability of <i>E</i>	
PROBABILI	p(E F)	conditional probability of E given F	
TY	E(X)	expected value of random variable X	
	V(X)	variance of random variable X	
	C_{n}	Catalan number	
	$N(n, \dots, n)$	number of elements having all the	
	$N(p_{i_1}\cdots p_{i_n})$	properties	
	$N(n' \dots n')$	number of elements having none of the	
	$N(p_{i_1} \cdots p_{i_n})$	properties	
	D_n	number of derangements of <i>n</i> object	
	SoR	composite of relations <i>R</i> and <i>S</i>	
	R^n	<i>n</i> th power of relation <i>R</i>	
	R^{-1}	inverse relation	
	^{S}C	selection operator for condition C	
	p_{i_1,i_2,\cdots,i_m}	projection	
	$J_p(R,S)$	join	
	Δ	diagonal relation	
RELATION	R^*	connectivity relation of <i>R</i>	
S	<i>a~b</i>	<i>a</i> is equivalent to <i>b</i>	
	$[a]_R$	equivalence class of a with respect to <i>R</i>	
	$[a]_m$	congruence class modulo <i>m</i>	
	(S R)	poset consisting of set S and partial	
	(5,11)	ordering <i>R</i>	
	a <b< th=""><td><i>a</i> is less than <i>b</i></td><td></td></b<>	<i>a</i> is less than <i>b</i>	
	a>b	<i>a</i> is greater than <i>b</i>	
	$a \leq b$	<i>a</i> is less than or equal to <i>b</i>	
	$a \ge b$	<i>a</i> is greater than or equal to <i>b</i>	
	(u,v)	directed edge	
	G=(V,E)	graph with vertex set V and edge set E	
	$\{u,v\}$	undirected edge	
	deg(v)	degree of vertex v	
	$deg^{-}(v)$	in-degree of vertex v	
	$\deg^+(v)$	out-degree of vertex <i>v</i>	
GRAPHS	K _n	complete graph on n vertices	
AND TREES	C_n	cycle of size <i>n</i>	
	Wn	wheel of size <i>n</i>	
	Q_n	<i>n</i> -cube	
	$K_{m,n}$	complete bipartite graph of size <i>m</i> , <i>n</i>	
	G-e	subgraph of G with edge e removed	
	G+e	graph produced by adding edge <i>e</i> to	
		graph G	

TOPIC	SYMBOL	MEANING	NOTES
	$G_I \cup G_2$	union of G_1 and G_2	
	$a, x_1,, x_{n-1}, b$	path from <i>a</i> to <i>b</i>	
	$a, x_1,, x_{n-1}, a$	circuit	
	<i>к</i> (G)	vertex connectivity of G	
	$\lambda(G)$	edge connectivity of G	
GRAPHS	r	number of regions of the plane	
	deg(R)	degree of region R	
I REES(cont.	$\chi(G)$	chromatic number of G	
)	т	greatest number of children of an internal vertex	
		in a rooted tree	
	п	number of vertices of a rooted tree	
	i	number of internal vertices of a rooted tree	
	l	number of leaves of a rooted tree	
	h	height of a rooted tree	
	\bar{x}	complement of Boolean variable x	
	x+y	Boolean sum of x and y	
ροοι ε λ Ν	$x \cdot y$ (or xy)	Boolean product of x and y	
ALCERDA	В	{0,1}	
ALGEBRA	F^d	dual of F	
	x y	x NAND y	
	$x \downarrow y$	x NOR y	
	λ	empty string	
	xy	concatenation of <i>x</i> and <i>y</i>	
	l(x)	length of string	
	w^R	reversal of w	
	(V,T,S,P)	phrase-structure grammar	
	S	start symbol	
LANGUAG	$w \rightarrow w_l$	production	
ES AND	$w_1 \Rightarrow w_2$	w_2 is directly derivable from w_1	
FINITE- STATE	$w_1 \stackrel{*}{\Rightarrow} w_2$	w_2 is derivable from w_1	
MACHINES	<a>::=c d	Backus–Naur form	
	(S,I,O,f,g,s_0)	finite-state machine with output	
	<i>S</i> 0	initial or start state	
	AB	concatenation of sets A and B	
	A^*	Kleene closure of A	
	(S,I,f,s_0,F)	finite-state machine automaton with no output	
	(S,I,f,s_0)	Turing machine	