
6.4 Several Special Types of Graphs

6.4.1 Bipartite Graphs
Necessary and sufficient conditions for a graph to be bipartite
Matching, maximal matching, maximum matching, complete 
matching, perfect matching

6.4.2 Eulerian Graphs
Eulerian circuits (paths) and their necessary and sufficient 
conditions for existence

6.4.3 Hamiltonian Graphs
Hamiltonian circuits (paths) and the necessary and sufficient 
conditions for their existence

6.4.4 Planar Graphs



6.4.2 Eulerian Graphs
⤷ Seven Bridges of Königsberg → Birth of Graph Theory

Diagram of the Seven Bridges of Königsberg



6.4.2 Eulerian Graphs
⤷ Eulerian Path (Circuit) and Eulerian Graph

 Eulerian Path: A path that passes through all vertices and each edge 
exactly once.

 Eulerian Circuit: A circuit that passes through all vertices and each 
edge exactly once.

 Eulerian Graph: A graph that contains an Eulerian circuit.

 Notes:

• The above definitions apply to both undirected and directed graphs.

• A trivial graph is considered an Eulerian graph.

• An Eulerian path is a simple path, and an Eulerian circuit is a simple 
circuit.

• Loops (self-edges) do not affect the Eulerian property of a graph.



6.4.2 Eulerian Graphs
⤷ Eulerian Graph Theorem (for undirected graphs)

Theorem 6.8:
(1) An undirected graph G has an Eulerian circuit if and only if G is 
connected and has no vertices of odd degree.

 (2) An undirected graph G has an Eulerian path but not an Eulerian 
circuit if and only if G is connected and has exactly two vertices of 
odd degree, with all other vertices having even degree. These two 
odd-degree vertices are the endpoints of every Eulerian path.



6.4.2 Eulerian Graphs
⤷ Eulerian Graph Theorem (for undirected graphs)(e.g.)

No Eulerian Path Eulerian Graph Eulerian Graph

Eulerian Path, not 
Eulerian Graph No Eulerian PathEulerian Path, not 

Eulerian Graph



6.4.2 Eulerian Graphs
⤷ Eulerian Graph Theorem (for directed graphs)

 Theorem 6.9:

(1) A directed graph D has an Eulerian circuit if and only if D is 
connected and the in-degree equals the out-degree for every 
vertex.

(2) A directed graph D has an Eulerian path but not an Eulerian 
circuit if and only if D is connected and there is one vertex
whose in-degree exceeds its out-degree by 1, and one vertex
whose out-degree exceeds its in-degree by 1, with all other 
vertices having equal in-degree and out-degree.



6.4.2 Eulerian Graphs
⤷ Eulerian Graph Theorem (for directed graphs)(e.g.)

Eulerian Graph No Eulerian Path No Eulerian Path

Eulerian Path, 
not Circuit

No Eulerian 
Path

Eulerian Path, 
not Circuit
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6.4.3 Hamiltonian Graphs
⤷ The "Hamiltonian Game" and the Hamiltonian Circuit

W.Hamilton, 1859



6.4.3 Hamiltonian Graphs
⤷ Hamiltonian Path (Circuit) and Hamiltonian  Graph

Hamiltonian Path: A path that visits every vertex in the graph 
exactly once.

Hamiltonian Circuit: A circuit that visits every vertex in the graph 
exactly once.

Hamiltonian Graph: A graph that contains a Hamiltonian circuit.
Notes:
• A Hamiltonian path is a elementary path.
• A Hamiltonian circuit is a elementary circuit.
• A graph having a Hamiltonian path does 

not necessarily have a Hamiltonian circuit.
• Loops and parallel edges do not affect the Hamiltonian property 

of a graph.



6.4.3 Hamiltonian Graphs
⤷ Necessary Condition for Hamiltonian Graphs (Undirected only)

Theorem 6.10: If an undirected graph G=<V,E> is a 
Hamiltonian graph, then for any non-empty proper subset V1 

⊂V, The number of connected components in G−V1 satisfies: 
p(G−V1)≤|V1|.

Proof:

Let C be a Hamiltonian circuit in G. Then:p(C−V1)≤∣V1∣, since 
p(C−V1) ≤ |V1|. And because C⊆G, Hence, p(G−V1) ≤ p(C−V1) 
≤ |V1|.     

Corollary:

A graph with a cut vertex is not a Hamiltonian graph.



6.4.3 Hamiltonian Graphs
⤷ Necessary Condition for Hamiltonian Graphs (e.g.)

Example:  Prove that each of the following graphs is 
not a Hamiltonian graph.

(a) (b) (c)

There exists a Hamiltonian path in (c).



6.4.3 Hamiltonian Graphs
⤷ Necessary Condition for Hamiltonian Graphs (e.g.)

Example: Prove that the graph on the 
right is not a Hamiltonian graph.

 Proof:  

• Assume there exists a Hamiltonian circuit. a,f,g
are the node  of degree 2, edge (a,c), (f,c) and
(g,c) must all be included in the Hamiltonian 
circuit. As a result, vertex c would appear three 
times, which is a contradiction.

• Moreover, the graph satisfies the condition of 
Theorem 6.10, which shows that the condition 
is necessary but not sufficient. The graph has a 
Hamiltonian path.

a

b
c

d
ef g



6.4.3 Hamiltonian Graphs
⤷ Sufficient Conditions for Hamiltonian Graphs (Undirected Case)

Theorem 6.11：
Let G be a simple undirected graph of order n (n≥3).

• If the sum of the degrees of any two non-adjacent vertices is at 
least n−1, then G contains a Hamiltonian path.

• If the sum is at least n, then G contains a Hamiltonian circuit, i.e., 
G is a Hamiltonian graph.

 Corollary：

• Let G be a simple undirected graph of order n (n≥3), If δ(G)≥n/2, 
then G is a Hamiltonian graph.

• When n≥3, the complete graph Kn is Hamiltonian; when r=s≥2, the 
complete bipartite graph Kr,s is Hamiltonian.



6.4.3 Hamiltonian Graphs
⤷ Detecting Hamiltonian Paths via Complete Underlying Graphs

Theorem 6.12:
Let D be a directed graph of order n (n≥2).
If the underlying undirected graph (obtained by ignoring the 
directions of all edges) contains a subgraph Kn , then D contains a 
Hamiltonian path.

Example: There are 7 people:
• A speaks English.
• B speaks English and Chinese.
• C speaks English, Italian, and Russian.
• D speaks Japanese and Chinese.
• E speaks German and Italian.
• F speaks French, Japanese, and Russian.
• G speaks French and German

Can they be seated 
around a round table 
so that each person 
can communicate 
with both neighbors?



6.4.3 Hamiltonian Graphs
⤷ Hamiltonian Circuits: Roundtable Seating for Communication

Solve:

(1) Construct an undirected graph where 

each person is a vertex, and there is 

an edge between two people if and 
only if they speak a common 

language.

(2) ACEGFDBA is a Hamiltonian circuit;
they can be seated in this order 

around the table.

A

B

CD
E

F
G
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6.4.4 Planar Graphs
⤷ Planar Graphs and Planar Embeddings

Definition 6.12: A graph G is called a planar graph if it can 
be drawn in the plane such that its edges do not intersect 
except at the vertices. The drawing of the graph with no 
edge intersections is called a planar embedding of G. A 
graph that does not have a planar embedding is called a 
non-planar graph.

Example: Determine whether the following graph is a planar 
graph.

（6）



6.4.4 Planar Graphs
⤷ Planar Graphs and Planar Embeddings(e.g.)

Example: Determine whether the following graph is a planar graph.

（6）
Solution：
• The graphs (1) to (4) are planar graphs. (2) is a planar embedding of 
(1), and (4) is a planar embedding of (3).

• (5) is the complete graph K5, which is a typical non-planar graph.
• (6) is the complete bipartite graph K3,3 , which is a typical non-
planar graph.



6.4.4 Planar Graphs
⤷Properties of Planar Embeddings: Faces, Boundaries, Degrees

 Let G be a planar embedding.
• Faces of G: Each region into which the plane is divided by the 
edges of G.

• Infinite face (outer face): The face with infinite area, denoted 
by R0 .

• Finite faces (inner faces): Faces with finite areas, denoted by R1, 
R2,…, Rk.

• Boundary of face Ri : The set of loops formed by the edges that 
enclose Ri.

• Degree of face Ri : The length of the boundary of Ri, denoted by 
deg(Ri).

Note: The boundary of a face may consist of simple loops, 
elementary cycles, or even more complex loops, and in some cases, 
it may be the union of disconnected loops.



6.4.4 Planar Graphs
⤷Planar Embeddings: Faces, Boundaries, Degrees(e.g.)

Example: The diagram on the right has 
4 faces.
R1 Boundary: a
R2 Boundary: bce
R3 Boundary: fg
R0 Boundary: abcdde, fg

deg(R1)= 1
deg(R2)= 3
deg(R3)= 2
deg(R0)= 8



6.4.4 Planar Graphs
⤷Planar Embeddings: Faces, Boundaries, Degrees(e.g.)

Example: The two diagrams on the right are planar 
embeddings of the same planar graph.

R1 is the outer face in (1) and the inner face in (2).
R2  is the inner face in (1) and the outer face in (2).

Explanation:

(1) A planar graph can have multiple different forms 
of planar embeddings, all of which are isomorphic.

(2) Any face of a planar graph can be considered the 
outer face through a transformation (such as 
geodesic projection).

R3

R1
R2

e1

e2

e3

e4

e5

(2)

R3

R2

R1

e1

e2

e3

e4 e5

(1)



6.4.4 Planar Graphs
⤷Theorem on the Sum of Face Degrees in a Planar Embedding

Theorem 6.13: The sum of the degrees of all faces in a planar graph 
is equal to twice the number of edges.

Proof: An edge either serves as a common boundary for two faces or 
appears twice in the boundary of a single face. When calculating the 
sum of the degrees of all faces, each edge is counted exactly twice.

For example: In the diagram below, the sum of the degrees of the 
faces is equal to: ∑𝒊𝒊=𝟎𝟎𝟑𝟑 𝒅𝒅𝒅𝒅𝒅𝒅 𝑹𝑹𝒊𝒊 = 𝟖𝟖 + 𝟏𝟏 + 𝟑𝟑 + 𝟐𝟐 = 𝟐𝟐| 𝒂𝒂,𝒃𝒃, 𝒄𝒄,𝒅𝒅, 𝒅𝒅,𝒇𝒇,𝒅𝒅 |



6.4.4 Planar Graphs
⤷Maximal planar graph

Definition 6.13: If G is a simple planar graph, and the graph 
obtained by adding a new edge between any two non-
adjacent vertices is non-planar, then G is called a maximal 
planar graph.
 Example: 

• K1, K2, K3, K4  are all maximal planar graphs.

• (1) is K5 with one edge removed, which is a maximal 
planar graph.(2) and (3) are not.

(2) (3)(1)



6.4.4 Planar Graphs
⤷Properties of Maximal Planar Graphs: Connected and triangular.

A maximal planar graph is connected.

 Let G be a simple graph of order n (n≥3). A necessary and 
sufficient condition for G to be a maximal planar graph is 
that the degree of each face in G is 3. （Triangulation）

 Example: 

Maximal planar graph

The degree of the outer face is 4.
It is a non-maximal planar graph.
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