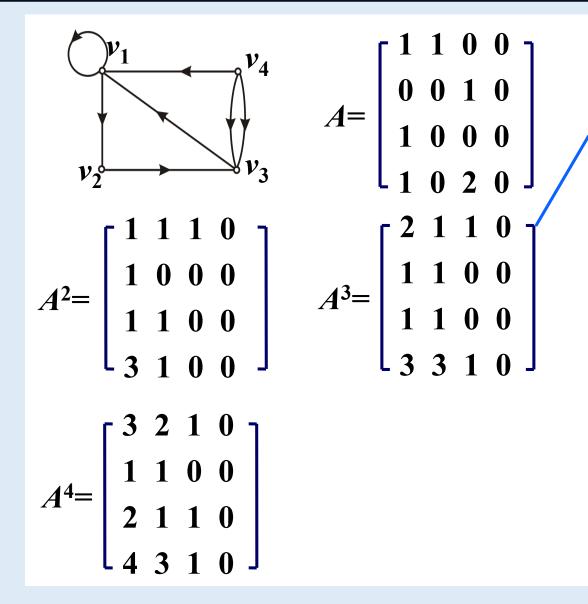


- Theorem 6.4: Let A be the adjacency matrix of the n-order directed graph D. Then, the elements of $A^{l}(l \ge 1)$:
 - $a_{ij}^{(l)}$ are the number of paths of length l from vertex v_i to vertex v_j in D.
 - a^(l)_{ii} is the number of cycles of length l starting and ending at vertex v_i.
 - $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)}$ is the total number of paths of length l (including cycles) in **D**.
 - $\sum_{i=1}^{n} a_{ii}^{(l)}$ is the total number of cycles of length l in **D**.

- **Corollary:** Let $B_l = A + A^2 + \dots + A^l (l \ge 1)$, Then, the elements :
 - **b**^(l)_{ij} are the number of paths (including cycles) of length less than or equal to l from vertex v_i to vertex v_i in D.
 - b^(l)_{ii} is the number of cycles in D whose length from v_i to v_i
 less than or equal to l.
 - $\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{(l)}$ is the number of paths (including cycles) in *D* whose length is *less than or equal to l*.
 - $\sum_{i=1}^{n} b_{ii}^{(l)}$ is the number of cycles in *D* whose length is *less* than or equal to *l*.

6.3.3 Adjacency Matrices of Directed and Undirected Graphs Graphs Counting Directed Paths via Adjacency Matrices (e.g.)



- There is 1 path of length 3 from v_1 to v_2 .
- There is 1 path of length
 3 from v₁ to v₃.
- There are 2 cycles of length 3 from v₁ to itself.
- There are a total of 15 paths of length 3 in **D**, of which 3 are cycles.

Let G=(V,E) be an undirected simple graph, where V={v₁, v₂,...,v_n}. Let a⁽¹⁾_{ij} denote the number of edges between vertices v_i and v_j. The matrix (a_{ij})_{n×n} is called the *adjacency matrix of G*, denoted as A(G).
 Example: Write the adjacency matrix of an undirected graph, and find the number of paths of length 3 from v_i to v₂ and the number of cycles of length 3 from v₁ to v₁.

There are **3 paths** of length 3 from v_1 to v_2 : $v_1v_2v_1v_2$, $v_1v_2v_3v_2$, $v_1v_4v_1v_2$. There are **2 cycles** of length 3 from v_1 to v_1 : $v_1v_2v_4v_1$, $v_1v_4v_2v_1$.

Chapter 6: Graphs 6.3 Matrix Representations of Graphs

- 6.3.1 Incidence Matrix of an Undirected Graph
- 6.3.2 Incidence Matrix of a Directed Acyclic Graph
- 6.3.3 Adjacency Matrix of a Directed and Undirected Graph The Number of Paths and Cycles in a Graph
- 6.3.4 Reachability Matrix of a Graph

6.3.4 Reachability Matrix of a Graph

4 Reachability Matrix of Graph

Let the graph (either undirected or directed) $G = \langle V, E \rangle$, $V = \{v_1, v_2, ..., v_n\}$,

let
$$p_{ij} = \begin{cases} 1, v_i \text{ can reach } v_j \\ 0, \text{ otherwise} \end{cases}$$

The matrix $(p_{ij})_{n \times n}$ is called the *reachability matrix* of G, denoted as P(G), or simply P.

Property:

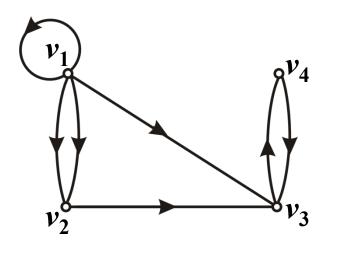
- (1) All the elements on the *main diagonal* of *P*(*G*) are 1.
- (2) The reachability matrix of an undirected graph is *symmetric*.
- (3) An undirected graph G is connected if and only if all elements of P(G) are 1. A directed graph D is strongly connected if and only if all elements of P(D) are 1.

(4) For an *n*-order graph, $p_{ij}=1 \Leftrightarrow b_{ij}^{(n-1)} > 0$, $i \neq j$.

6.3.4 Reachability Matrix of a Graph

Reachability matrix of Graph(e.g.)

Example:



Solution ?

(1) How many paths of length 3 are there from v_1 to v_4 , and from v_4 to v_1 ? (2) How many cycles of length 1, 2, 3, and 4 are there from v_1 to itself? (3) How many paths of length 4 are there in total? How many of them are cycles? (4) How many cycles of length less than or equal to 4 are there in total? (5) Write the reachability matrix of **D**, and is **D** strongly connected?

6.3.4 Reachability Matrix of a Graph

\u2264 Reachability matrix of Graph(e.g.)

Solution:

$$A^{3} = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0$$

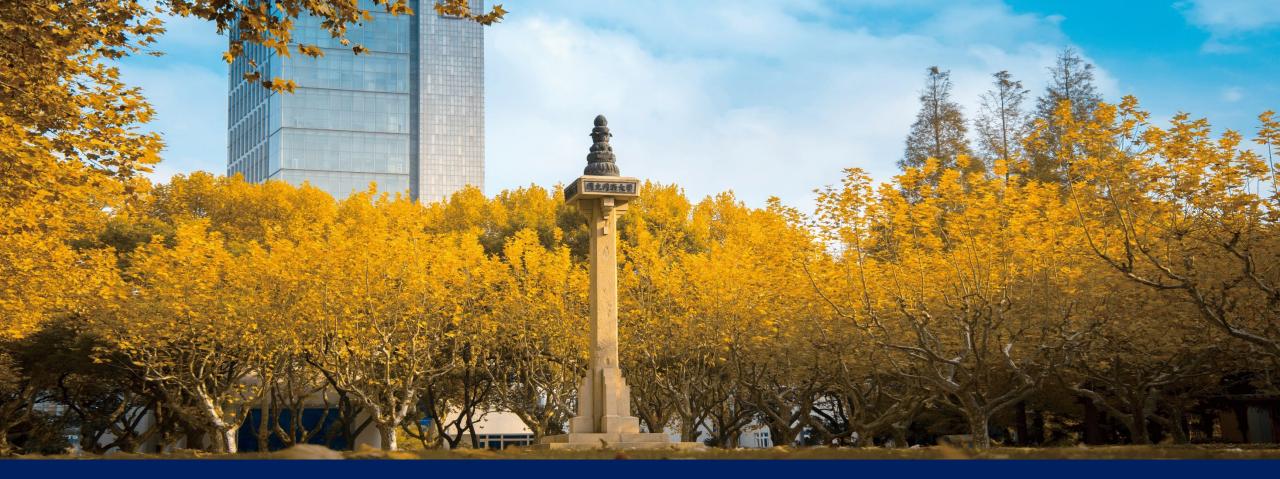
(5) Reachability Matrix: P(G)

less than or equal to 4.

6.3 Matrix Representations of Graphs • Brief summary

Objective :

Key Concepts :



Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

- **6.1 Basic Concepts of Graphs**
- **6.2** Connectivity of Graphs
- **6.3** Matrix Representations of Graphs
- **6.4** Several Special Types of Graphs

6.4.1 Bipartite Graphs

Necessary and sufficient conditions for a graph to be bipartite matching, maximal matching, maximum matching, complete matching, perfect matching

6.4.2 Eulerian Graphs

Eulerian circuits (paths) and their necessary and sufficient conditions for existence

6.4.3 Hamiltonian Graphs

Hamiltonian circuits (paths) and the necessary and sufficient

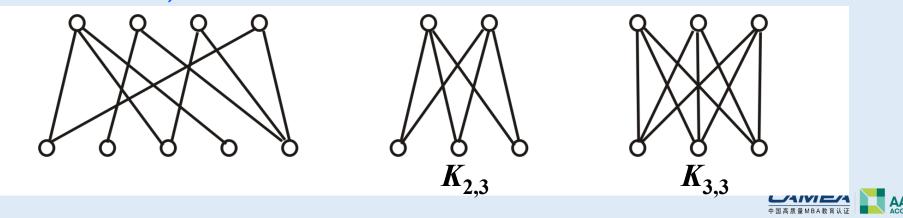
conditions for their existence

6.4.4 Planar Graphs

6.4.1 Bipartite Graphs Bipartite Graph and Complete Bipartite Graph

• Let $G=\langle V, E \rangle$, $G=\langle V, E \rangle$ be an undirected graph. If it is possible to partition V into two sets V_1 and V_2 such that: $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$, Each edge in G has one endpoint in V_1 and the other in V_2 , then G is called a *bipartite graph*, denoted as $\langle V_1, V_2, E \rangle$, and V_1 and V_2 are called *complementary vertex subsets*.

• Furthermore, if **G** is a simple graph and every vertex in V_1 is adjacent to every vertex in V_2 , then G is called a *complete bipartite graph*, denoted as $K_{r,s}$, where $r = |V_1|$ and $s = |V_2|$.



Theorem 6.5: An undirected graph G=<V,E> is a bipartite graph if and only if it contains no odd-length cycles.

Proof:

(1) Necessity: Let $G = \langle V_1, V_2, E \rangle$ be a bipartite graph. Each edge can only connect V_1 to V_2 or V_2 to V_1 , so any cycle in G must have even length.

- (2) Sufficiency: Assume *G* has at least one edge and is connected. Take any vertex *u*, and define:
- $V_1 = \{v \mid v \in V \text{ and the distance from } v \text{ to } u \text{ is even}\}$
- $V_2 = \{v | v \in V \text{ and the distance from v to } u \text{ is odd} \}$
- Then, $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$.

Proof:

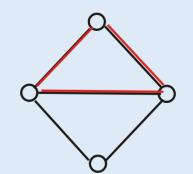
(2) Sufficiency: Assume *G* has at least one edge and is connected. Take any vertex *u*, and define:

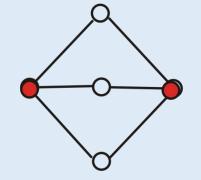
- $V_1 = \{v \mid v \in V \text{ and the distance from } v \text{ to } u \text{ is even}\}$
- $V_2 = \{v | v \in V \text{ and the distance from v to } u \text{ is odd} \}$

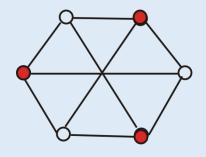
Then, $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$.

- First, we prove that no two vertices in V_1 are adjacent. Suppose there exist $s,t \in V_1$ such that $e=(s,t) \in E$. Let Γ_1 and Γ_2 be the shortest paths from u to s and u to t, respectively. Then, $\Gamma_1 \cup e \cup \Gamma_2$ forms a cycle of odd length, which contradicts the assumption.
- Similarly, we can prove that no two vertices in V_2 are adjacent.

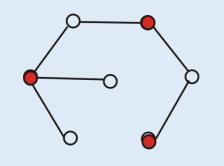
6.4.1 Bipartite Graphs <u> Cycle Characterization of Bipartite Graphs(e.g.)</u>

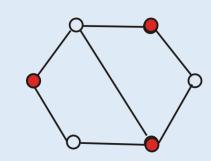


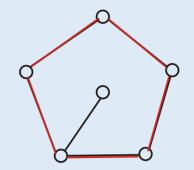




Non-bipartite graph





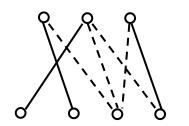


Non-bipartite graph

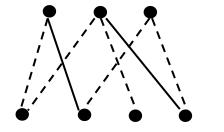
6.4.1 Bipartite Graphs Matchings and Complete Matchings in Bipartite Graphs

Definition 6.11: Let $G = \langle V_1, V_2, E \rangle$ be a bipartite graph, where $E' \subseteq E$. If the edges in E' are pairwise non-adjacent, then E' is called a *matching* in G. If adding any edge to E' results in a set of edges that is no longer a matching, then E' is called a *maximal matching* in G. The matching in G with the maximum number of edges is called the *maximum matching* of G.

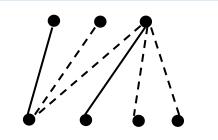
- Moreover, suppose $|V_1| \le |V_2|$ and E' is a matching in G. If $|E'| = |V_1|$, then E' is called a complete matching from V_1 to V_2 .
- When $|V_1| = |V_2|$, a complete matching is called a *perfect matching*.



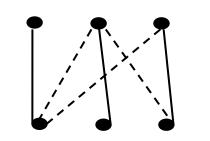
Maximum Matching and Complete Matching



Maximal Matching



Maximum Matching



Perfect Matching

Theorem 6.6 (Hall's Theorem):

Let $G = \langle V_1, V_2, E \rangle$ be a bipartite graph with $|V_1| = |V_2|$. There *exists a complete matching* from V_1 to V_2 in G if and only if, for any k (where $1 \le k \le |V_1|$), the set of k vertices in V_1 is adjacent

to at least k vertices in V_2 (the *distinctness condition*).

Theorem 6.7:

Let $G = \langle V_1, V_2, E \rangle$ be a bipartite graph with $|V_1| \le |V_2|$. If there exists a positive integer t such that each vertex in V_1 is connected to at least t edges, and each vertex in V_2 is connected to at most t edges (the t-condition), then there exists a complete matching from V_1 to V_2 in G.

同济经管 TONGJI SEN

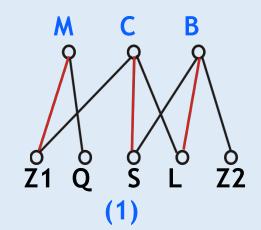
Example:

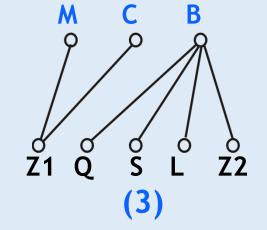
A middle school has three extracurricular activity groups: the Math Group, the Computer Group, and the Biology Group. There are five students: Zhao, Qian, Sun, Li, and Zhou. In each of the following three cases, determine whether it is possible to select three students to serve as group leaders, one for each group: (1) Zhao and Qian are members of the Math Group; Zhao, Sun, and Li are members of the Computer Group; Sun, Li, and Zhou are members of the Biology Group.

(2) Zhao is a member of the Math Group; Qian, Sun, and Li are members of the Computer Group; Qian, Sun, Li, and Zhou are members of the Biology Group.
(3) Zhao is a member of both the Math and Computer Groups; Qian, Sun, Li, and Zhou are members of the Biology Group.

• Application Examples of Complete Matchings

M: Math Group C: Computer Group B: Biology Group Z1: Zhao Q: Qian S: Sun L: Li Z2: Zhou





A complete matching corresponds to a feasible assignment. (1) and (2) admit complete matchings, with multiple possible assignments.

(3) does not satisfy thedistinctness condition, so nocomplete matching exists.

