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4 Counting Directed Paths via Adjacency Matrices & TONGJISEM

m Theorem 6.4: Let A be the adjacency matrix of the n-order
directed graph D. Then, the elements of Al([>1):

a'V
dij

v.1n D.
. ()

are the number of paths of length [ from vertex v, to vertex

is the number of cycles of length [ starting and ending at
vertex V;

i=1 2j=1 ) is the total number of paths of length [

(including cycles) in D.

* Y4 a() is the total number of cycles of length [ in D.
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6.3.3 Adjacency Matrices of Directed and Undirected Graphs

% Counting Directed Paths via Adjacency Matrices « Corollary &) roncasem

m Corollary: Let B=A+A%+...+A/([>1), Then, the elements :

. bg) are the number of paths (including cycles) of length

less than or equal to [ from vertex v, to vertex v;in D.

. b() is the number of cycles in D whose length from v, to v,
less than or equal to l.
i=12j=1 bg) is the number of paths (including cycles) in
D whose length is less than or equal to (.

* Yitq b() is the number of cycles in D whose length is less
than or equal to [.
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6.3.3 Adjacency Matrices of Directed and Undirected Graphs

L Counting Directed Paths via Adjacency Matrices (e.g.)

° There is 1 path of length

3 from v, to v,.
1/ ° There is 1 path of length
i 3 from v, to v;.

* There are 2 cycles of
length 3 from v, to itself.

°* There are a total of 15
paths of length 3 in D, of
which 3 are cycles.
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6.3.3 Adjacency Matrix of a Directed and Undirected Graph TR [l 1 545

% Adjacency Matrix of a Undirected Graph &/ TONGJISEM

m Let G=(V,E) be an undirected simple graph, where V={v,,v,,...,v,}.

Let agjl) denote the number of edges between vertices v; and v;. The

matrix (a;;),«, is called the adjacency matrix of G, denoted as A(G).
= Example: Write the adjacency matrix of an undirected graph, and find
the number of paths of length 3 from v;to v, and the number of cycles

of length 3 from v, to v,.

! i 0 1 0 1 2 1 1 1] (2 3 1 3]
4|t 011 2|t 301 gp=|3 231

“lo 1 0 0 1 0 1 1 ;i(l’;

1 1 0 0 1 1 1 2 : -

There are 3 paths of length 3 from v to v,: v v,v.v,, V.VoVaV,, V.V, V,.
There are 2 cycles of length 3 from v, tov,: v,v,v,v,, V.V,V,V..
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Chapter 6: Graphs

oy Il i 4%
L6.3 Matrix Representations of Graphs & TONGJISEM

m 6.3.4 Reachability Matrix of a Graph
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6.3.4 Reachability Matrix of a Graph TN il B 2505

% Reachability Matrix of Graph &2 TONGJISEM
m L et the graph (either undirected or directed) G=<V,E>, V={v., v,, .., vV, },

1, wv;canreachv;
let p;; = .
0, otherwise
The matrix (p;;),,, Is called the reachability matrix of G, denoted as
P(G), or simply P.
= Property:
(1) All the elements on the main diagonal of P(G) are 1.
(2) The reachability matrix of an undirected graph is symmetric.

(3) An undirected graph G is connected if and only if all elements of
P(G) are 1. Adirected graph D is strongly connected if and only if
all elements of P(D) are 1.

nxn

(4) For an n-order graph, p;=1 < bg.'_l) > 0, 1#].
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6.3.4 Reachability Matrix of a Graph TN il B 2505

L Reachability matrix of Graph(e.g.) &2 TONGJISEM

= Example:
(1) How many paths of length 3 are there

from v, tov,, and fromv, tov,?

(2) How many cycles of length 1, 2, 3, and 4
are there from v, to itself?

(3) How many paths of length 4 are there in

V) > V3 total ? How many of them are cycles ?

(4) How many cycles of length less than or
equal to 4 are there in total ?

(5) Write the reachability matrix of D, and is
D strongly connected?

m Solution ?
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6.3.4 Reachability Matrix of a Graph

L Reachability matrix of Graph(e.g.)
= Solution:

12 31 (1) There are 3 paths of length 3

-1 21 0+
Vy ) 0 0001 from v, to v, . There are 0 paths
A= 0010 4o 0010 of length 3 from v, to v, .
0001
v, & -0010- -0001- (2) There are 1 cycles of length 1,
2, 3, and 4 from v, to itself.
1243 - 1264, [1111]7 1
. (0010 0001 | p 0111/ (3)There are 16 paths of length
=loo001!4%] 0010 0011 4, of which 3 are cycles.
0010 looo1l) Lloor1r1-

(4) There are 8 cycles of length

less th [ to 4.
(5) Reachability Matrix: P(G) €ss than or equal to
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&2 TONGJISEM

6.3 Matrix Representations of Graphse Brief summary

Objective :

Key Concepts :
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Chapter 6: Graphs

Y TONGJISEM

m6.1 Basic Concepts of Graphs
m6.2 Connectivity of Graphs
m6.3 Matrix Representations of Graphs

m6.4 Several Special Types of Graphs
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6.4 Several Special Types of Graphs &9) ronen sem

m6.4.1 Bipartite Graphs
Necessary and sufficient conditions for a graph to be bipartite
matching, maximal matching, maximum matching, complete
matching, perfect matching

m 6.4.2 Eulerian Graphs
Eulerian circuits (paths) and their necessary and sufficient
conditions for existence

m 6.4.3 Hamiltonian Graphs
Hamiltonian circuits (paths) and the necessary and sufficient
conditions for their existence

m 6.4.4 Planar Graphs
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6.4.1 Bipartite Graphs

L Bipartite Graph and Complete Bipartite Graph

mLet G=(V,E),G=(V,E) be an undirected graph. If it is possible to partition

V into two sets V, and V, such that: V.uV,=V, V.nV,=3, Each edge in

G has one endpoint in V, and the other in V, ,then G is called a

bipartite graph, denoted as <V.,V,,E>, and V, and V, are called

complementary vertex subsets.

* Furthermore, if G is a simple graph and every vertex in V, is adjacent
to every vertex in V, , then G is called a complete bipartite graph,
denoted as K, ., where r=|V, | and s=1|V, |.

r,s’

K2 3 K3,3



6.4.1 Bipartite Graphs TN il B 2505

4 Cycle Characterization of Bipartite Graphs &2 TONGJISEM

m Theorem 6.5: An undirected graph G=<V,E> is a bipartite graph if and
only if it contains no odd-length cycles.

m Proof:

(1) Necessity: Let G=<V.,V,,E> be a bipartite graph. Each edge can
only connect V, to V, or V, to V., so any cycle in G must have even
length.

(2) Sufficiency: Assume G has at least one edge and is connected.
Take any vertex u, and define:

V.={v|vE&YV and the distance from v to u is even}
V,={v|vEV and the distance from v to u is odd}
Then, V,UV,=V, V.NnV,=3.
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6.4.1 Bipartite Graphs RN [l i 4585

4 Cycle Characterization of Bipartite Graphs &2 TONGJISEM

m Proof:

(2) Sufficiency: Assume G has at least one edge and is connected. Take any
vertex u, and define:

V.={v|vE YV and the distance from v to u is even}
V,={v|vEYV and the distance from v to u is odd}
Then, V,LV,=V, V.NnV,=0.

* First, we prove that no two vertices in V, are adjacent. Suppose there
exist s,tE& V, such that e=(s,t)eE. Let I, and I, be the shortest paths
from u to s and u to t, respectively. Then, I'yu e Ul, forms a cycle of odd
length, which contradicts the assumption.

* Similarly, we can prove that no two vertices in V, are adjacent.
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6.4.1 Bipartite Graphs

% Cycle Characterization of Bipartite Graphs(e.g.) &) roncasem

N\

Non-bipartite graph

Non-bipartite graph
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6.4.1 Bipartite Graphs RN [l i 4585

% Matchings and Complete Matchings in Bipartite Graphs & TONGJISEM

m Definition 6.11: Let G=<V,,V,,E> be a bipartite graph, where E'cE.
If the edges in E’ are pairwise non-adjacent, then E’ is called a
matching in G. If adding any edge to E’ results in a set of edges that
is no longer a matching, then E’ is called a maximal matching in G.
The matching in G with the maximum number of edges is called the

maximum matching of G.

° Moreover, suppose |V,|<|V,]| and E" is a matching in G. If
|E'"|=]|V,]|, then E" is called a complete matching from V, to V,

°* When |V,|=]|V,| , a complete matching is called a perfect
matching.
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6.4.1 Bipartite Graphs RN [l i 25 8

% Matchings and Complete Matchings in Bipartite Graphs( & TONGJISEM

\6 \
Maximum Matching and
Complete Matching

Maximum Matching Perfect Matching
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6.4.1 Bipartite Graphs RN [l i 4585

L Complete Matching Existence Theorem &2 TONGJI SEM

® Theorem 6.6 (Hall's Theorem):
Let G=<V,,V,,E> be a bipartite graph with |V,|=|V,] .
There exists a complete matching from V, to V, in G if and only if,
for any k (where 1<k<| V, |), the set of k vertices in V, is adjacent
to at least k vertices in V, (the distinctness condition).

= Theorem 6.7:
Let G=<V,,V,,E> be a bipartite graph with |V,]|<]|V,]|. If there
exists a positive integer t such that each vertex in V, is connected
to at least t edges, and each vertex in V, is connected to at most ¢
edges (the t-condition), then there exists a complete matching
from V,to V,in G.
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6.4.1 Bipartite Graphs @ Il 3 25 5

L Application Examples of Complete Matchings =~/ TONGJI SEM

= Example:
A middle school has three extracurricular activity groups: the Math Group, the
Computer Group, and the Biology Group. There are five students: Zhao, Qian,
Sun, Li, and Zhou. In each of the following three cases, determine whether it is
possible to select three students to serve as group leaders, one for each group:
(1) Zhao and Qian are members of the Math Group; Zhao, Sun, and Li are
members of the Computer Group; Sun, Li, and Zhou are members of the Biology
Group.
(2) Zhao is a member of the Math Group; Qian, Sun, and Li are members of the
Computer Group; Qian, Sun, Li, and Zhou are members of the Biology Group.
(3) Zhao is a member of both the Math and Computer Groups; Qian, Sun, Li, and
Zhou are members of the Biology Group.
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M: Math Group

C: Computer Group
B: Biology Group
Z1: Zhao

Q: Qian

S: Sun

L: Li

Z2: Zhou

M C B

/1 Q S L 122

(2)

Z1Q S L 172
(1)

M C B
O

Z1Q S L 172
(3)

A complete matching
corresponds to a feasible
assignment.

(1) and (2) admit complete
matchings, with multiple
possible assignments.

(3) does not satisfy the
distinctness condition, so no
complete matching exists.
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