
6.3.3 Adjacency Matrices of Directed and Undirected Graphs
⤷ Counting Directed Paths via Adjacency Matrices

 Theorem 6.4: Let A be the adjacency matrix of the n-order 
directed graph D. Then, the elements of Al(l≥1):

• 𝒂𝒂𝒊𝒊𝒊𝒊
(𝒍𝒍) are the number of paths of length l from vertex vi to vertex 

vj in D.

• 𝒂𝒂𝒊𝒊𝒊𝒊
(𝒍𝒍) is the number of cycles of length l starting and ending at 

vertex vi
.

• ∑𝒊𝒊=𝟏𝟏𝒏𝒏 ∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒂𝒂𝒊𝒊𝒊𝒊
(𝒍𝒍) is the total number of paths of length l 

(including cycles) in D.

• ∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒂𝒂𝒊𝒊𝒊𝒊
(𝒍𝒍) is the total number of cycles of length l in D.



6.3.3 Adjacency Matrices of Directed and Undirected Graphs
⤷ Counting Directed Paths via Adjacency Matrices • Corollary

 Corollary: Let Bl=A+A2+…+Al(l≥1), Then, the elements :

• 𝒃𝒃𝒊𝒊𝒊𝒊
(𝒍𝒍) are the number of paths (including cycles) of length 

less than or equal to l from vertex vi to vertex vj in D.

• 𝒃𝒃𝒊𝒊𝒊𝒊
(𝒍𝒍) is the number of cycles in D whose length from vi to vi 

less than or equal to l. 

• ∑𝒊𝒊=𝟏𝟏𝒏𝒏 ∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒃𝒃𝒊𝒊𝒊𝒊
(𝒍𝒍) is the number of paths (including cycles) in 

D whose length is less than or equal to l. 

• ∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒃𝒃𝒊𝒊𝒊𝒊
(𝒍𝒍) is the number of cycles in D whose length is less 

than or equal to l.



6.3.3 Adjacency Matrices of Directed and Undirected Graphs
⤷ Counting Directed Paths via Adjacency Matrices (e.g.)

v1

v2 v3

v4

A=

1  1  0  0
0  0  1  0
1  0  0  0
1  0  2  0

A2=

1  1  1  0
1  0  0  0
1  1  0  0
3  1  0  0

A3=

2  1  1  0
1  1  0  0
1  1  0  0
3  3  1  0

A4=

3  2  1  0
1  1  0  0
2  1  1  0
4  3  1  0

• There is 1 path of length 
3 from v1 to v2.

• There is 1 path of length 
3 from v1 to v3.

• There are 2 cycles of 
length 3 from v1 to itself.

• There are a total of 15 
paths of length 3 in D, of 
which 3 are cycles.



6.3.3 Adjacency Matrix of a Directed and Undirected Graph
⤷ Adjacency Matrix of a Undirected  Graph

 Let G=⟨V,E⟩ be an undirected simple graph, where V={v1,v2,…,vn}. 

Let 𝒂𝒂𝒊𝒊𝒊𝒊
(𝟏𝟏) denote the number of edges between vertices vi and vj. The 

matrix (aij)n×n is called the adjacency matrix of G, denoted as A(G).
 Example: Write the adjacency matrix of an undirected graph, and find 

the number of paths of length 3 from vi to v2 and the number of cycles 
of length 3 from v1 to v1.

v1 v4

v2 v3

𝐴𝐴 =

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

𝐴𝐴2 =

2 1 1 1
1 3 0 1
1 0 1 1
1 1 1 2

𝐴𝐴3 =

2 3 1 3
3 2 3 4
1 3 0 1
3 4 1 2

There are 3 paths of length 3 from v1to v2: v1v2v1v2, v1v2v3v2, v1v4v1v2.
There are 2 cycles of length 3 from v1 to v1:  v1v2v4v1, v1v4v2v1.



Chapter 6: Graphs

⤷6.3 Matrix Representations of Graphs

6.3.1 Incidence Matrix of an Undirected Graph

6.3.2 Incidence Matrix of a Directed Acyclic Graph

 6.3.3 Adjacency Matrix of a Directed and Undirected Graph
The Number of Paths and Cycles in a Graph

6.3.4 Reachability Matrix of a Graph



6.3.4 Reachability Matrix of a Graph

⤷ Reachability Matrix of Graph

 Let the graph (either undirected or directed) G=<V,E>, V={v1, v2, …, vn}, 

let 𝒑𝒑𝒊𝒊𝒊𝒊 = �𝟏𝟏， 𝒗𝒗𝒊𝒊 𝐜𝐜𝐜𝐜𝐜𝐜 reach 𝒗𝒗𝒊𝒊
𝟎𝟎， 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

The matrix (pij)n×n is called the reachability matrix of G, denoted as 
P(G), or simply P. 
Property:
(1) All the elements on the main diagonal of P(G) are 1.
(2) The reachability matrix of an undirected graph is symmetric.
(3) An undirected graph G is connected if and only if all elements of 

P(G) are 1. A directed graph D is strongly connected if and only if 
all elements of P(D) are 1.

(4) For an n-order graph, pij=1 ⇔ 𝒃𝒃𝒊𝒊𝒊𝒊
(𝒏𝒏−𝟏𝟏) > 𝟎𝟎, i≠j.



6.3.4 Reachability Matrix of a Graph

⤷ Reachability matrix of Graph(e.g.)

(1) How many paths of length 3 are there 
from v1 to v4, and from v4 to v1 ?

(2) How many cycles of length 1, 2, 3, and 4 
are there from v1 to itself?

(3) How many paths of length 4 are there in 
total ? How many of them are cycles ?

(4) How many cycles of length less than or 
equal to 4 are there in total ?

(5) Write the reachability matrix of D, and is 
D strongly connected?

v1

v2
v3

v4

 Example:

 Solution ?



6.3.4 Reachability Matrix of a Graph

⤷ Reachability matrix of Graph(e.g.)

v1

v2
v3

v4

 Solution:

A=

1  2  1  0
0  0  1  0
0  0  0  1
0  0  1  0

A2=

1  2  3  1
0  0  0  1
0  0  1  0
0  0  0  1

A3=

1  2  4  3
0  0  1  0
0  0  0  1
0  0  1  0

A4=

1  2  6  4
0  0  0  1
0  0  1  0
0  0  0  1

(1) There are 3 paths of length 3
from v1 to v4 . There are 0 paths 
of length 3 from v4 to v1 .

(2) There are 1 cycles of length 1, 
2, 3, and 4 from v1to itself.

(3) There are 16 paths of length 
4, of which 3 are cycles.

(5) Reachability Matrix: P(G)

(4) There are 8 cycles of length 
less than or equal to 4.

P=

1  1  1  1
0  1  1  1
0  0  1  1
0  0  1  1



6.3 Matrix Representations of Graphs• Brief summary

Objective :

Key Concepts ：
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Chapter 6: Graphs

6.1 Basic Concepts of Graphs

6.2 Connectivity of Graphs

6.3 Matrix Representations of Graphs

6.4 Several Special Types of Graphs



6.4 Several Special Types of Graphs

6.4.1 Bipartite Graphs
Necessary and sufficient conditions for a graph to be bipartite
matching, maximal matching, maximum matching, complete 
matching, perfect matching

6.4.2 Eulerian Graphs
Eulerian circuits (paths) and their necessary and sufficient 
conditions for existence

6.4.3 Hamiltonian Graphs
Hamiltonian circuits (paths) and the necessary and sufficient 
conditions for their existence

6.4.4 Planar Graphs



6.4.1 Bipartite Graphs
⤷ Bipartite Graph and Complete Bipartite Graph

 Let G=⟨V,E⟩,G=⟨V,E⟩ be an undirected graph. If it is possible to partition 
V into two sets V1 and V2  such that: V1∪V2=V, V1∩V2=∅，Each edge in 
G has one endpoint in V1  and the other in V2 ,then G is called a 
bipartite graph, denoted as <V1,V2,E>, and V1  and V2 are called 
complementary vertex subsets.
•Furthermore, if G is a simple graph and every vertex in V1  is adjacent 
to every vertex in V2 , then G is called a complete bipartite graph, 
denoted as Kr,s, where r=∣V1 ∣ and s=∣V2 ∣.

K2,3 K3,3



6.4.1 Bipartite Graphs
⤷ Cycle Characterization of Bipartite Graphs

Theorem 6.5: An undirected graph G=<V,E> is a bipartite graph if and 
only if it contains no odd-length cycles.

Proof: 

(1) Necessity: Let G=<V1,V2,E> be a bipartite graph. Each edge can 
only connect V1  to V2 or V2  to V1 , so any cycle in G must have even 
length.

(2) Sufficiency: Assume G has at least one edge and is connected. 
Take any vertex u, and define:

V1={v∣v∈V and the distance from v to u is even}

V2={v∣v∈V and the distance from v to u is odd}

Then, V1∪V2=V, V1∩V2=∅.



6.4.1 Bipartite Graphs
⤷ Cycle Characterization of Bipartite Graphs

Proof: 

(2) Sufficiency: Assume G has at least one edge and is connected. Take any 
vertex u, and define:

V1={v∣v∈V and the distance from v to u is even}

V2={v∣v∈V and the distance from v to u is odd}

Then, V1∪V2=V, V1∩V2=∅. 

• First, we prove that no two vertices in V1 are adjacent. Suppose there 
exist s,t∈ V1 such that e=(s,t)∈E. Let Γ1 and Γ2 be the shortest paths 
from u to s and u to t, respectively. Then, Γ1∪ e ∪Γ2 forms a cycle of odd 
length, which contradicts the assumption.

• Similarly, we can prove that no two vertices in V2 are adjacent.



6.4.1 Bipartite Graphs
⤷ Cycle Characterization of Bipartite Graphs(e.g.)

Non-bipartite graph

Non-bipartite graph



6.4.1 Bipartite Graphs
⤷ Matchings and Complete Matchings in Bipartite Graphs

Definition 6.11:  Let G=<V1,V2,E> be a bipartite graph, where E′⊆E. 
If the edges in E′ are pairwise non-adjacent, then E′ is called a 
matching in G. If adding any edge to E′ results in a set of edges that 
is no longer a matching, then E′ is called a maximal matching in G. 
The matching in G with the maximum number of edges is called the 
maximum matching of G.

• Moreover, suppose |V1|≤|V2| and E′ is a matching in G. If 
|E′|=|V1|, then E′ is called a complete matching from V1  to V2    .

• When |V1|=|V2| , a complete matching is called a perfect 
matching.



6.4.1 Bipartite Graphs
⤷ Matchings and Complete Matchings in Bipartite Graphs(e.g.)

Maximum Matching and 
Complete Matching Maximal Matching

Maximum Matching Perfect Matching



6.4.1 Bipartite Graphs
⤷ Complete Matching Existence Theorem

Theorem 6.6 (Hall's Theorem):
Let G=<V1,V2,E> be a bipartite graph with |V1|=|V2| .
There exists a complete matching from V1 to V2 in G if and only if, 
for any k (where 1≤k≤∣ V1 ∣), the set of k vertices in V1 is adjacent 
to at least k vertices in V2 (the distinctness condition).

Theorem 6.7:
Let G=<V1,V2,E> be a bipartite graph with |V1|≤|V2|. If there 
exists a positive integer t such that each vertex in V1 is connected 
to at least t edges, and each vertex in V2 is connected to at most t
edges (the t-condition), then there exists a complete matching 
from V1 to V2 in G.



6.4.1 Bipartite Graphs
⤷ Application Examples of Complete Matchings

Example:
A middle school has three extracurricular activity groups: the Math Group, the 
Computer Group, and the Biology Group. There are five students: Zhao, Qian, 
Sun, Li, and Zhou. In each of the following three cases, determine whether it is 
possible to select three students to serve as group leaders, one for each group:

(1) Zhao and Qian are members of the Math Group; Zhao, Sun, and Li are 
members of the Computer Group; Sun, Li, and Zhou are members of the Biology 
Group.
(2) Zhao is a member of the Math Group; Qian, Sun, and Li are members of the 
Computer Group; Qian, Sun, Li, and Zhou are members of the Biology Group.
(3) Zhao is a member of both the Math and Computer Groups; Qian, Sun, Li, and 
Zhou are members of the Biology Group.



6.4.1 Bipartite Graphs
⤷ Application Examples of Complete Matchings

(3)

M C B

Z1 Q S L Z2

(1)

M C B

Z1 Q S L Z2

(2)

M C B

Z1 Q S L Z2

M: Math Group
C: Computer Group
B: Biology Group
Z1: Zhao
Q: Qian
S: Sun
L: Li
Z2: Zhou

A complete matching 
corresponds to a feasible 
assignment.
(1) and (2) admit complete 
matchings, with multiple 
possible assignments.

(3) does not satisfy the 
distinctness condition, so no 
complete matching exists.
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