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% Elementary Paths (Circuits) and Simple Paths (Circuits) & TONGJISEM

m Definition 6.8: Given a graph G=<V,E>(either undirected or directed),
an alternating sequence of vertices and edges in G I=v,e,v.e,...e\v,.
(1) vi(1<il), e,=(v,_,,v;). I" is called a path from vyto v,, v, and v,

are called the starting point and ending point of the path,
respectively, and [ is the length of the path. If v,=v,, I" the path is
called a circuit (or cycle).

(2) If all the vertices in a path or circuit are distinct (except for v,=v,
in the case of a circuit), it is called an elementary path or simple
path (and an elementary circuit or simple cycle). A cycle of odd
length is called an odd cycle, and a cycle of even length is called an
even cycle.

(3) If all edges in a path or circuit are distinct, it is called a simple
path (or simple circuit); otherwise, it is called a non-simple or
complex path (or complex circuit). CAMEA [ ¥ pess  Equis

tEsmEMBAxE N E I



6.2.1 Paths and Circuits TR [l 1 545

L Representations of a Path or Circuit &2 TONGJI SEM

= Representations of a Path or Circuit
(O According to the definition, using an alternating sequence of
vertices and edges: /=v,e,v.e,..eVv,
@ Using a sequence of edges: I=e.e,...e,
@ In a simple graph, using a sequence of vertices: I'=vyVv....v,
m Properties of Circuits
*In an undirected graph, a circuit of length 1 is formed by a loop
(an edge connecting a vertex to itself). A circuit of length 2 is
formed by two parallel edges between the same pair of vertices. In
an undirected simple graph, all circuits have length = 3.
°|n a directed graph, a circuit of length 1 is also formed by a loop.
In a directed simple graph, all circuits have length = 2.
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6.2.1 Paths and Circuits

L Elementary paths (or circuit) [« simple paths (or circuit) & TONGJISEM

m Every elementary path (or circuit) is a simple path (or circuit),
but the converse is not necessarily true.

m Example: o—o ff o—o0—o0

0—0—0—0—0——0 Non-elementary

Elementary Path simple path
Elementary Non-elementary
Cycle simple cycle
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L Connectivity and Connected Components of Undirected Graphs= tonaisem

mLet G=<V,E> be an undirected graph, and let u,veV

* Connectivity between u and v: Vertex u is said to be connected to
vertex v if there exists a path between them. By convention, every vertex
is considered to be connected to itself.

* Connected graph: A graph in which every pair of vertices is connected. A
trivial graph (with only one vertex) is considered connected.

* Connectivity relation: R={<u,v>| u,v €V and u is connected to v}. R s
an equivalence relation.

* Connected component: The subgraph induced by each equivalence class
of V under the relation R is called a connected component of G. Suppose
V/IR={V,,V,,...,V,}, then the connected components of G are the
subgraphs G[V,],G[V,],...,G[V,].

°* Number of connected components: p(G)=k
G is a connected graph < p(G)=1. alancss  Equis



6.2.2 Connectivity and Connectedness in Undirected

L Shortest Paths and Distances in Undirected Graphs

m Shortest path between u and v: A path of the shortest length
between vertices u and v, assuming u and v are connected.

m Distance between u and v d(u,v): The length of the shortest path
between u and v. If u and v are not connected, define d(u,v)=-.

= Property:
(1) d(u,v)=>0, and d(u,v)=0 < u=v
(2) d(u,v)=d(v,u)
(3) d(u,v)+d(v,w)=>d(u,w)

= For example: The shortest path between a and e is shown in the
figure on the right: ace, afe. d(a,e)=2, d(a,h)=x
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% Vertex Cuts and Edge Cuts in Undirected Graphs & ToNGJISEM

m Let undirected graph G=<V,E>, veV, ecE, V'cV, E'cE.
* G—v: The graph obtained by removing vertex v and all edges
incident to it from G.

* G-V': The graph obtained by removing all vertices in V' and their
incident edges from G.

* G—e : The graph obtained by removing edge e from G.
* G—E': The graph obtained by removing all edges in E’ from G.

m Definition 6.9: Let undirected graph G=<V,E>, V'cV, If p(G-V')>p(G),
then V' is called a vertex cut set of G. if {v} is vertex cut set, then v
is called a cut vertex.

° Let E'cE, if p(G-E')>p(G), then E’ is called an edge cut set of G. If
fe} is edge cut set , then e s called a cut edge or a bridge.
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6.2.2 Connectivity and Connectedness in Undirected

% Vertex Cuts and Edge Cuts in Undirected Graphs(e.g.) &) ronaursen

Cut vertex: e,f

Vertex cut set : {e},{f}, {c,d}

Bridge: eg, e,

Edge cut set :{e.},{e,}, {€,,€,}, {e,,
e;, €1, 1€y, €3, €4, €7}

= Notes:
(1) The complete graph K_ has no vertex cut set.

(2) An n-vertex null graph has neither a vertex cut set nor an
edge cut set.

(3) If G is connected and E’ is an edge cut set, then p(G-E")=2.
(4) If G is connected and V' is a vertex cut set, then p(G-V')>2.
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L The correct minimum cut problem TONGJI SEM

Deterministic Near-Linear Time Minimum Cut in Weighted Graphs

L, , L
Monika Henzinger® Jason Lit Satish Rac? Di Wang®

January 12, 2024

Abstract

In 1996, Karger [Kar96] gave a startling randomized algorithm that finds a minimum-cut in
a (weighted) graph in time O{m [(,5_.;” n) which he termed near-linear time meaning linear (in the
size of the input) times a polylogarthmic factor. In this paper, we give the first deterministic
algorithm which runs in near-linear time for weighted graphs.

Previously, the breakthrough results of Kawarabayashi and Thorup [KT19] gave a near-linear
time algorithm for simple graphs (which was improved to have running time O(m lu;.l;2 nloglogn)
in [HRW20].) The main technique here is a clustering procedure that perfectly preserves
mum cuts. Recently, Li [Li21] gave an m!'*°{!) deterministic minimum-cut algorithm for
weighted graphs: this form of running time has been termed “almost-linear”. Li uses almost-
linear time deterministic expander decompositions which do not perfectly preserve minimum
cuts, but he can use these clusterings to. in a sense, “derandomize” the methods of Karger.

In terms of techniques, we provide a structural theorem that says there exists a sparse
clustering that preserves minimum cuts in a weighted graph with o(1) error. In addition, we
construct it deterministically in near linear time. This was done exactly for simple graphs in
[KT19, HRW20] and with polylogarithmic error for weighted graphs in [Li2l]. Extending the
techniques in [KT19. HRW2()] to weighted graphs presents significant challenges, and moreover,
the algorithm can only polylogarithmically approximately preserve minimum cuts. A remaining
challenge is to reduce the polylogarithmic-approximate clusterings to 1+o(1/ log n)-approximate
so that they can be applied recursively as in [Li2l] over O(logn) many levels. This is an
additional challenge that requires building on properties of tree-packings in the presence of
a wide range of edge weights to. for example, find sources for local flow computations which

identify minimum cuts that cross clusters.

“Institute of Science and Technology Austria (ISTA), Klesterneuburg, Austria. See funding information in the
acknowledgement section. email: monika. henzinger@ista.ac.at

"Simons Institute, UC Berkeley. email: jmli®alumni . con.edu

*UC Berkeley. email: satishr@berkeley.edu

"Google Research. email: wadi@google.com
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A graph and its two cuts: the red dashed lines indicate a cut
consisting of three edges, while the green lines represent a

minimum cut of the graph, consisting of two edges.
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- Vertex Connectivity and Edge Connectivity & TONGJISEM

m Definition 6.10: An undirected connected graph G=<V,E>,

°*x(G)=min{| V'] | V' is a vertex cut of G or G-V' becomes a trivial graph}
is called the vertex connectivity of G.

* A(G)=min{|E’| | E' is an edge cut of G}
is called the edge connectivity of G.

= Example:
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6.2.2 Connectivity and Connectedness in Undirected

4 The Connectivity Inequality in Undirected Graphs

= Notes:
(1) If G is a trivial graph, then «(G)=0, A(G)=0.
(2) If Gis a complete graph K., then x(G)=n-1, A(G)= n-1.

(3) If G has a cut vertex, then x(G)=1; if G has a bridge (cut edge),
then A(G)=1.

(4) By convention, the vertex connectivity and edge connectivity of
a disconnected graph are both defined to be 0.

m Theorem 6.3: For any undirected graph G, we have
x(G) < A(G) L4(G).
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6.2 Graph Connectivity
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m6.2.3 Connectivity and Classification in Directed Graphs
Reachability
Weak Connectivity, Unilateral Connectivity, and Strong Connectivity
Shortest Paths and Distances

cCAMEA | ®
m- | AACSB  EQUIS



6.2.3 Connectivity and Classification in Directed Graphs

L Theorem on the Connectivity of Directed Graphs

mLet D=<V,E> be a directed graph, u,veV,

(1) uis reachable from v: There exists a path from u to v. By
convention, every vertex is reachable from itself.

(2) u and v are mutually reachable: u is reachable from v, and v is
reachable from u.

(3) D is weakly connected (connected): The undirected graph obtained
by ignoring the directions of all edges is connected.

(4) D is unilaterally connected: Yu,veV, either u is reachable from v
or v is reachable from u.

(5) D is strongly connected: Yu,veV, u and v are mutually reachable.

(6) D is strongly connected if and only if there exists a circuit that
passes through all vertices.

(7) D is unilaterally connected if and only if there exists a path that
passes through all vertices. CAMEA [ ¥ pess  Equis
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% Shortest Paths and Distances in Directed Graphs & TONGJISEM

m Shortest path from u to v: The path from u to v with the
minimum length (assuming u is reachable from v).

m Distance d<u,v>: The length of the shortest path fromu to v. If u
is not reachable from v, then by convention, <u,v>=~,

m Properties of a Distance Function d<u,v> :
* d<u,v>20 and d<u,v>=0 < u=v
° d<u,v>+d<v,w> >d<u,w>
* Note: Distance is not symmetric
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6.2 Graph Connectivitye Brief summary

Objective :

Key Concepts :
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L6.3 Matrix Representations of Graphs &2 TONGJISEM
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LDefinition of the Incidence Matrix &2 TONGJISEM

mlet G=<V,E>, V={v,, v,, .., v, }, E={e,, e,, .., e_}.
° Let m;; be the incidence of vertex v;with edge e;, the matrix
(M;;),..m is called the incidence matrix of G, denoted as M(G). The
possible values of m,;: 0,1,2

Example:
—211000 -
010111
MG)=| 000011
000000
001100 -
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L Properties of the Incidence Matrix & TONGUISEM
n
(1) Emi" =2, j=1,2,....m (4) ej and ey are parallel edge
i=1 & the j-th column and the k-th
column are identical.
m
(2) z m;;=dw), i=12...n (5)V;is an isolated vertex <> i-th row is
i all zeros.
(3) Z m;; = 2m (6) E; is loop < The first element in
ij column j is 2, others are all 0.
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L The Incidence Matrix of a DAG &/ TONGJISEM

Let the directed acyclic graph D=<V,E>, V={v,, v,, .., V. },
E={e,, e,, ..., e_}.
1, v; is the starting point of e;

Let m;; = < 0, v;isnotincidentto e;

\
The matrix (m,)

—1,v; is the endpoint of e;

called the incidence matrix of D, called M(D).

nxXm

m Properties of a DAG:

(1) Each column contains exactly one 1 and one -1.

(2) The total number of 1's is equal to the total number of -1's, which
equals the number of edges.

(3) The number of 1's in the i-th row equals d*(v;), and the number of
-1's in the i-th row equals d*(v;).

(4) E; and e, are parallel edges < the j-th column and the k-th
column are identical. alaacss  EQuis
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&2/ TONGJI SEM

L The Incidence Matrix of a DAG(e.g.)

-1 1.0 0 0-1 11
0-1100 00
0O 0-1-1-11-1
-1 00 110 0-
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L Adjacency Matrix of a Directed Graph &/ TONGJI SEM

m Let D=(V,E), where V={v,v,,...,v } and E={e,, e, ..., €},
Let the number of edges from vertex v; to vertex v; be denoted as
(1)

a'? . The matrix (ai]. )mxn 1S Called the adjacency matrix of D,

ij
denoted as A(D), or simply A.

m Properties of A(D):
- The sum of the rows equals the
outdegree of the graph.

(1) _ _ The sum of the columns equals
(2) a;” =d"(vj), J=12,...n the indegree of the graph.
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6.3.3 Adjacency Matrix of a Directed and Undirected Graph

L Adjacency Matrix of a Directed Graph &) roncnsem

m Properties of A(D):

(3) ab =m The sum of all the elements
ij equals the number of edges.

n The sum of the diagonal elements
(4) z agil) = the number of loops at D equals the number of vertex loops.
i=1

= Example:

0010
Y A=11000

11020 .
v;' > V3
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