

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

- **6.1 Basic Concepts of Graphs**
- 6.2 Graph Connectivity
- 6.3 Matrix Representations of Graphs
- **6.4** Special Types of Graphs

6.2.1 Paths and Circuits

Elementary Paths (Circuits) and Simple Paths (Circuits)

6.2.2 Connectivity and Connectedness in Undirected Graphs

Connected Graphs and Connected Components

Shortest Paths and Distances

- Vertex Cut Sets, Cut Vertices, Edge Cut Sets, and Bridges
- Vertex Connectivity and Edge Connectivity
- 6.2.3 Connectivity and Classification in Directed Graphs Reachability

Weak Connectivity, Unilateral Connectivity, and Strong Connectivity Shortest Paths and Distances

6.2.1 Paths and CircuitsLementary Paths (Circuits) and Simple Paths (Circuits)

Definition 6.8: Given a graph G=<V,E>(either undirected or directed), an alternating sequence of vertices and edges in G Γ=v₀e₁v₁e₂...e_lv_l.
 (1) ∀i(1≤i≤l), e_i=(v_{i-1},v_i). Γ is called a *path* from v₀ to v_l, v₀ and v_l are called the starting point and ending point of the path, respectively, and l is the length of the path. If v₀=v_l, Γ the path is called a *circuit* (or cycle).

- (2) If all the vertices in a path or circuit are distinct (except for $v_0 = v_l$ in the case of a circuit), it is called an *elementary path* or simple **path** (and an elementary circuit or simple cycle). A cycle of odd length is called an **odd cycle**, and a cycle of even length is called an **even cycle**.
- (3) If all edges in a path or circuit are distinct, it is called a *simple path* (or simple circuit); otherwise, it is called a non-simple or complex path (or complex circuit).

Representations of a Path or Circuit

① According to the definition, using an *alternating sequence* of

vertices and edges: $\Gamma = v_0 e_1 v_1 e_2 \dots e_l v_l$.

(2) Using a sequence of edges: $\Gamma = e_1 e_2 \dots e_l$.

(3) In a simple graph, using a sequence of vertices: $\Gamma = v_0 v_1 ... v_l$

Properties of Circuits

- In an undirected graph, a circuit of length 1 is formed by a loop
 (an edge connecting a vertex to itself). A circuit of length 2 is
 formed by two parallel edges between the same pair of vertices. In
 an undirected simple graph, all circuits have length ≥ 3.
- In a directed graph, a circuit of length 1 is also formed by a loop.
 In a directed simple graph, all circuits have length ≥ 2.

Every elementary path (or circuit) is a simple path (or circuit), but the converse is not necessarily true.

6.2.1 Paths and Circuits

Elementary Paths (Circuits) and Simple Paths (Circuits)

6.2.2 Connectivity and Connectedness in Undirected Graphs

Connected Graphs and Connected Components

Shortest Paths and Distances

Vertex Cut Sets, Cut Vertices, Edge Cut Sets, and Bridges

Vertex Connectivity and Edge Connectivity

6.2.3 Connectivity and Classification in Directed Graphs Reachability

Weak Connectivity, Unilateral Connectivity, and Strong Connectivity Shortest Paths and Distances

- **Let** $G = \langle V, E \rangle$ be an undirected graph, and let $u, v \in V$
 - Connectivity between u and v: Vertex u is said to be connected to vertex v if there exists a path between them. By convention, every vertex is considered to be connected to itself.
 - Connected graph: A graph in which every pair of vertices is connected. A trivial graph (with only one vertex) is considered connected.
 - Connectivity relation: $R = \{ \langle u, v \rangle \mid u, v \in V \text{ and } u \text{ is connected to } v \}$. *R* is an equivalence relation.
 - Connected component: The subgraph induced by each equivalence class of V under the relation R is called a connected component of G. Suppose V/R={V₁, V₂,...,V_k}, then the connected components of G are the subgraphs G[V₁],G[V₂],...,G[V_k].
 - Number of connected components: p(G)=kG is a connected graph $\Leftrightarrow p(G)=1$.

- Shortest path between u and v: A path of the shortest length between vertices u and v, assuming u and v are connected.
- Distance between u and v d(u,v): The length of the shortest path between u and v. If u and v are not connected, define $d(u,v)=\infty$.

Property:

- (1) $d(u,v) \ge 0$, and $d(u,v) = 0 \Leftrightarrow u = v$
- (2) d(u,v)=d(v,u)
- (3) $d(u,v)+d(v,w)\geq d(u,w)$

For example: The shortest path between *a* and *e* is shown in the figure on the right: *ace*, *afe*. d(a,e)=2, $d(a,h)=\infty$

- Let undirected graph $G = \langle V, E \rangle$, $v \in V$, $e \in E$, $V' \subseteq V$, $E' \subseteq E$.
 - **G**–**v**: The graph obtained by **removing vertex** *v* **and all edges** incident to it from **G**.
 - **G**–**V'**: The graph obtained by **removing all vertices in V'** and their incident edges from **G**.
 - G_{-e} : The graph obtained by **removing edge** e from G.
 - **G**-**E':** The graph obtained by **removing all edges in E'** from **G**.
- Definition 6.9: Let undirected graph G=<V,E>, V'⊂V, If p(G–V')>p(G), then V' is called a vertex cut set of G. if {v} is vertex cut set, then v is called a cut vertex.
 - Let E'⊆E, if p(G–E')>p(G), then E' is called an edge cut set of G. If
 {e} is edge cut set , then e s called a cut edge or a bridge.

6.2.2 Connectivity and Connectedness in Undirected Vertex Cuts and Edge Cuts in Undirected Graphs(e.g.)

Cut vertex: e,fVertex cut set : $\{e\},\{f\},\{c,d\}$ Bridge: e_8, e_9 Edge cut set : $\{e_8\},\{e_9\},\{e_1,e_2\},\{e_1,e_3,e_4,e_7\}$

Notes:

(1) The complete graph K_n has no vertex cut set.

(2) An *n-vertex null graph* has neither a vertex cut set nor an edge cut set.

- (3) If G is connected and E' is an edge cut set, then p(G-E')=2.
- (4) If G is connected and V' is a vertex cut set, then $p(G-V') \ge 2$.

Deterministic Near-Linear Time Minimum Cut in Weighted Graphs

Monika Henzinger
* Jason Li[†] Satish Rao[‡] Di Wang[§]

January 12, 2024

Abstract

In 1996, Karger [Kar96] gave a startling randomized algorithm that finds a minimum-cut in a (weighted) graph in time $O(m \log^3 n)$ which he termed near-linear time meaning linear (in the size of the input) times a polylogarthmic factor. In this paper, we give the first deterministic algorithm which runs in near-linear time for weighted graphs.

Previously, the break through results of Kawarabayashi and Thorup [KT19] gave a near-linear time algorithm for simple graphs (which was improved to have running time $O(m \log^2 n \log \log n)$ in [HRW20].) The main technique here is a clustering procedure that perfectly preserves minimum cuts. Recently, Li [Li21] gave an $m^{1+o(1)}$ deterministic minimum-cut algorithm for weighted graphs; this form of running time has been termed "almost-linear". Li uses almost-linear time deterministic expander decompositions which do not perfectly preserve minimum cuts, but he can use these clusterings to, in a sense, "derandomize" the methods of Karger.

In terms of techniques, we provide a structural theorem that says there exists a sparse clustering that preserves minimum cuts in a weighted graph with o(1) error. In addition, we construct it deterministically in near linear time. This was done exactly for simple graphs in [KT19, HRW20] and with polylogarithmic error for weighted graphs in [Li21]. Extending the techniques in [KT19, HRW20] to weighted graphs presents significant challenges, and moreover, the algorithm can only polylogarithmic-approximately preserve minimum cuts. A remaining challenge is to reduce the polylogarithmic-approximate clusterings to $1+o(1/\log n)$ -approximate so that they can be applied recursively as in [Li21] over $O(\log n)$ many levels. This is an additional challenge that requires building on properties of tree-packings in the presence of a wide range of edge weights to, for example, find sources for local flow computations which identify minimum cuts that cross clusters.

*Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. See funding information in the acknowledgement section. email: monika.henzinger@ista.ac.at 'Simons Institute.UC Berkeley.email: jnil@alumi.cm.edu

⁺UC Berkeley. email: satishr@berkeley.edu

[§]Google Research. email: wadi@google.com

A graph and its *two cuts*: the red dashed lines indicate a cut consisting of three edges, while the green lines represent a *minimum cut of the graph*, consisting of two edges.

6.2.2 Connectivity and Connectedness in Undirected • Vertex Connectivity and Edge Connectivity

Definition 6.10: An undirected connected graph *G*=<*V*,*E*>,

- *k*(G)=min{|V'| | V' is a vertex cut of G or G-V' becomes a trivial graph}
 is called the vertex connectivity of G.
- λ(G)=min{|E'| | E' is an edge cut of G} is called the edge connectivity of G.

Notes:

- (1) If G is a *trivial graph*, then $\kappa(G)=0$, $\lambda(G)=0$.
- (2) If G is a complete graph K_n , then $\kappa(G)=n-1$, $\lambda(G)=n-1$.
- (3) If G has a cut vertex, then $\kappa(G)=1$; if G has a bridge (cut edge), then $\lambda(G)=1$.
- (4) By convention, the vertex connectivity and edge connectivity of a *disconnected graph* are both defined to be 0.
- Theorem 6.3: For any undirected graph G, we have $\kappa(G) \le \lambda(G) \le \delta(G)$.

6.2.1 Paths and Circuits

Elementary Paths (Circuits) and Simple Paths (Circuits)

- 6.2.2 Connectivity and Connectedness in Undirected Graphs Connected Graphs and Connected Components
 - Shortest Paths and Distances
 - Vertex Cut Sets, Cut Vertices, Edge Cut Sets, and Bridges
 - Vertex Connectivity and Edge Connectivity

6.2.3 Connectivity and Classification in Directed Graphs Reachability

Weak Connectivity, Unilateral Connectivity, and Strong Connectivity Shortest Paths and Distances

- Let *D*=<*V*,*E*> be a directed graph, *u*,*v*∈*V*,
 - (1) *u* is reachable from *v*: There exists a path from *u* to *v*. By convention, every vertex is reachable from itself.
 - (2) *u* and *v* are *mutually reachable*: *u* is reachable from *v*, and *v* is reachable from *u*.
 - (3) *D* is *weakly connected* (connected): The undirected graph obtained by ignoring the directions of all edges is connected.
 - (4) D is unilaterally connected: ∀u,v∈V, either u is reachable from v or v is reachable from u.
 - (5) *D* is strongly connected: $\forall u, v \in V$, *u* and *v* are mutually reachable.
 - (6) *D* is *strongly connected* if and only if there *exists a circuit* that passes through all vertices.
 - (7) *D* is unilaterally connected if and only if there exists a path that passes through all vertices.

- Shortest path from u to v: The path from u to v with the minimum length (assuming u is reachable from v).
- **Distance** d < u, v >: The length of the shortest path from u to v. If u is not reachable from v, then by convention, $\langle u, v \rangle = \infty$.

Properties of a Distance Function d<u,v>:

- $d < u, v > \ge 0$ and $d < u, v > = 0 \Leftrightarrow u = v$
- *d*<*u*,*v*>+*d*<*v*,*w*> ≥*d*<*u*,*w*>
- Note: Distance is *not symmetric*

6.2 Graph Connectivity • Brief summary

Objective :

Key Concepts :

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

- **6.1** Basic Concepts of Graphs
- **6.2 Graph Connectivity**
- **■6.3 Matrix Representations of Graphs**
- **6.4** Special Types of Graphs

- 6.3.1 Incidence Matrix of an Undirected Graph
- 6.3.2 Incidence Matrix of a Directed Acyclic Graph
- 6.3.3 Adjacency Matrix of a Directed Graph, Adjacency Matrix of an Undirected Graph
 The Number of Paths and Cycles in a Graph
- 6.3.4 Reachability Matrix of a Graph

Let
$$G = \langle V, E \rangle$$
, $V = \{v_1, v_2, ..., v_n\}$, $E = \{e_1, e_2, ..., e_m\}$.

• Let m_{ij} be the incidence of vertex v_i with edge e_j , the matrix $(m_{ij})_{n \times m}$ is called the *incidence matrix* of G, denoted as M(G). The possible values of m_{ij} : 0,1,2

Example: $M(G) = \begin{bmatrix} 2 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$	$e_1 \underbrace{v_1}_{e_2} \underbrace{v_2}_{e_3} \underbrace{v_2}_{e_4} \underbrace{e_5}_{v_5} e_6$
	v_{4}

(1)
$$\sum_{i=1}^{n} m_{ij} = 2, \quad j = 1, 2, ..., m$$

(4) e_j and e_k are parallel edge
 ⇔ the j-th column and the k-th column are identical.

(2)
$$\sum_{j=1}^{m} m_{ij} = d(v_i), \quad i = 1, 2, ..., n$$

(5) V_i is an *isolated vertex* \Leftrightarrow *i*-th row is all zeros.

$$(3) \quad \sum_{i,j} m_{ij} = 2m$$

(6) E_j is loop ⇔ The first element in column j is 2, others are all 0.

- 6.3.1 Incidence Matrix of an Undirected Graph
- 6.3.2 Incidence Matrix of a Directed Acyclic Graph
- 6.3.3 Adjacency Matrix of a Directed Graph, Adjacency Matrix of an Undirected Graph
 The Number of Paths and Cycles in a Graph
- 6.3.4 Reachability Matrix of a Graph

b The Incidence Matrix of a DAG

Let the directed acyclic graph D=<V,E>, V={v₁, v₂, ..., v_n}, E={e₁, e₂, ..., e_m}.
Let $m_{ij} = \begin{cases} 1, v_i \text{ is the starting point of } e_j \\ 0, v_i \text{ is not incident to } e_j \\ -1, v_i \text{ is the endpoint of } e_j \end{cases}$

The matrix $(m_{ij})_{n \times m}$ called the incidence matrix of **D**, called M(D).

Properties of a DAG:

- (1) Each column contains exactly one 1 and one -1.
- (2) The total number of 1's is equal to the total number of -1's, which equals the number of edges.
- (3) The number of 1's in the i-th row equals $d^+(v_i)$, and the number of -1's in the i-th row equals $d^-(v_i)$.
- (4) E_j and e_k are parallel edges \Leftrightarrow the j-th column and the k-th column are identical.

- 6.3.1 Incidence Matrix of an Undirected Graph
- 6.3.2 Incidence Matrix of a Directed Acyclic Graph
- 6.3.3 Adjacency Matrix of a Directed and Undirected Graph The Number of Paths and Cycles in a Graph
- 6.3.4 Reachability Matrix of a Graph

6.3.3 Adjacency Matrix of a Directed and Undirected Graph
 Adjacency Matrix of a Directed Graph

 Let D=(V,E), where V={v₁, v₂, ..., v_n} and E={e₁, e₂, ..., e_m}, Let the number of edges from vertex v_i to vertex v_j be denoted as a⁽¹⁾_{ij}. The matrix (a⁽¹⁾_{ij})_{m×n} is called the *adjacency matrix* of D, denoted as A(D), or simply A.

Properties of
$$A(D)$$
:
(1) $\sum_{j=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \quad i = 1, 2, ..., n$

The sum of the rows equals the outdegree of the graph.

(2)
$$\sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \quad j = 1, 2, ..., n$$

The sum of the columns equals the indegree of the graph.

6.3.3 Adjacency Matrix of a Directed and Undirected Graph Adjacency Matrix of a Directed Graph

Properties of A(D):

(3)
$$\sum_{i,j} a_{ij}^{(1)} = m$$

The sum of all the elements equals the number of edges.

(4) $\sum_{i=1}^{n} a_{ii}^{(1)} = the number of loops at D$ The sum of the diagonal elements equals the number of vertex loops.

