

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

■6.1 Basic Concepts of Graphs

- 6.2 Graph Connectivity
- **6.3** Matrix Representations of Graphs
- **6.4** Special Types of Graphs

6.1.1 Undirected and Directed Graphs

- **6.1.2** Vertex Degree and the Handshaking Lemma
- 6.1.3 Common Types of Graphs
- 6.1.4 Subgraphs and Complements
- 6.1.5 Graph Isomorphism

6.1.1 Undirected and Directed Graphs Graphs and Graph Models

Social Networks

We can use a simple graph toWe can use arepresent whether two people knowdevices andeach other.type of com

Communication networks

We can use vertices to represent devices and edges to represent the type of communications link of interest.

6.1.1 Undirected and Directed Graphs Graph Models

Transportation Networks

We can use a simple graph to represent roads, air and rail networks, etc... Software design applications
We can use a simple graph to
represent how different blocks
interact each other.

6.1.1 Undirected and Directed Graphs Classical Problems in Graph Theory

Shortest Path Problem:

Given a weighted graph, find the shortest path between two nodes. This problem can be solved using algorithms such as **Dijkstra's algorithm**, **Bellman-Ford algorithm**, and **Floyd-Warshall algorithm**.

Minimum Spanning Tree Problem:

Given a weighted, undirected, and connected graph, find a spanning tree with the minimum total edge weight.

This problem can be solved using algorithms such as **Kruskal's algorithm** and **Prim's algorithm**.

Maximum Flow Problem:

In a directed graph, find the maximum possible flow from a source node to a sink node.

This problem can be solved using algorithms such as Ford-Fulkerson algorithm and Dinic's algorithm.

Topological Sorting Problem:

Given a directed acyclic graph (DAG), arrange its nodes in a linear sequence such that all directed edges go from earlier to later nodes in the sequence.

This problem can be solved using **depth-first search (DFS)** and **breadth-first search (BFS)**.

Minimum Cut Problem:

In a weighted undirected graph, find a set of edges whose removal disconnects the graph and whose total weight is minimized.

This problem can be solved using algorithms such as the **Stoer-Wagner** algorithm and **Karger's algorithm**.

Multiset: A set in which elements are allowed to appear more than once.

- **Multiplicity:** The number of times an element appears in a multiset.
- **Example:** S={a,b,b,c,c,c}, Then the multiplicities of a,b,c is 1,2,3

- Definition6.1: An undirected graph G=(V,E), where V≠Ø is called the vertex set, and its elements are called vertices or nodes. E is a multisubset of the unordered product V&V, and is called the edge set, whose elements are undirected edges, or simply edges.
 - Sometimes, we use *V*(*G*) and *E*(*G*) to represent the vertex set and edge set of graph G, respectively.

Example: *G*=<*V*,*E*>as shown in the figure:

Where
$$V = \{v_1, v_2, ..., v_5\}$$

 $E = \{(v_1, v_1), (v_1, v_2), (v_1, v_5), (v_2, v_3), (v_2, v_3), (v_2, v_5), (v_4, v_5)\}$

- Sometimes, we use V(D) and E(D) to represent the vertex set and edge set of the graph D, respectively.
- **Finite Graph:** A graph in which both *V*, *E* are finite sets.
- **n-Vertex Graph (Graph of Order** *n***):** A graph with exactly *n* vertices.
- **Null Graph:** A graph with *E*=Ø.
- **Trivial Graph:** A graph with only one vertex and no edges.
- **Empty Graph:** A graph with **V**=Ø

6.1.1 Undirected and Directed Graphs • Vertex Degree and Adjacency in Undirected Graphs

- Let $G = \langle V, E \rangle$ be an undirected graph and let $e_k = (v_i, v_j) \in E$, then v_i, v_j are the end point of edge e_{k_i} , e_k is said to be incident to $v_i(v_j)$.
 - If $v_i \neq v_j$, the incidence number of e_k with respect to $v_i(v_j)$ is 1.
 - If $v_i = v_j$, the incidence number of e_k with respect to v_i is 2.
 - If v_i is not an endpoint of edge e, then the incidence number of e with respect to v_i is 0.
- Let $v_i, v_j \in V$, $e_k, e_l \in E$, $if(v_i, v_j) \in E$, then v_i, v_j adjacent.
 - If e_k,e_l share a common endpoint, then they are said to be adjacent edges.

- 6.1.1 Undirected and Directed Graphs Adjacency between Vertices and Edges in Directed Graphs
- Let directed gragh $D = \langle V, E \rangle$, $e_k = \langle v_i, v_j \rangle \in E$, then v_i , v_j are called endpoint of e_k , v_i is e_k start vertex, v_j is e_k end vertex.
 - The edge e_k is said to be incident from $v_i(v_j)$.
 - If the head of edge e_k is the tail of edge e_l, then e_k and e_l are said to be adjacent edges.
- In both undirected and directed graphs, an edge that connects a vertex to itself is called a *loop*. A vertex with no incident edges is referred to as an *isolated vertex*.

- **6.1.1 Undirected and Directed Graphs**
- **6.1.2 Vertex Degree and the Handshaking Lemma**
- 6.1.3 Common Types of Graphs
- 6.1.4 Subgraphs and Complements
- **6.1.5** Graph Isomorphism

- Let $G = \langle V, E \rangle$ be an undirected graph, $v \in V$,
 - The *degree d(v)* of a vertex v: the number of edges incident to v.
 - A *pendant vertex*: a vertex with degree **1**.
 - A *pendant edge*: an edge that is incident to a pendant vertex.
 - The maximum degree of $G: \Delta(G) = \max\{d(v) \mid v \in V\}$.
 - The minimum degree of $G: \delta(G) = \min\{d(v) \mid v \in V\}$.

For example :

 $d(v_5)=3, d(v_2)=4, d(v_1)=4,$ $\Delta(G)=4, \delta(G)=1,$ v_4 is a pendant vertex, e_7 is

a pendant edge, e_1 is a loop.

Let $D = \langle V, E \rangle$ to be a directed gragh, $v \in V$,

- The out-degree $d^+(v)$: the number of edges where v is the starting point.
- The *in-degree* $d^{-}(v)$: the number of edges where v is the ending point.
- The degree d(v) of a vertex v: the total number of edges incident to v(as either the starting or ending point). $d(v) = d^+(v) + d^-(v)$.
- Maximum and minimum out-degree in **D**: $\Delta^+(D)$, $\delta^+(D)$
- Maximum and minimum in-degree in **D**: $\Delta^{-}(D)$, $\delta^{-}(D)$
- Maximum and minimum total degree in $D: \Delta(D), \delta(D)$

 $\Delta^+=4, \ \delta^+=0, \ \Delta^-=3, \ \delta^-=1, \ \Delta=5, \ \delta=3$

6.1.2 Vertex Degree and the Handshaking Lemma

Theorem 6.1: In any graph (undirected or directed), the sum of the degrees of all vertices is equal to twice the number of $edges(\sum_{i=1}^{n} d(v_i)=2m)$.

- Proof: Each edge in the graph (including loops) has two endpoints. Therefore, when summing the degrees of all vertices, each edge contributes
 2 to the total degree.
- With m edges, the total degree is $\Sigma d(v)=2m$.
- Corollary: Any graph (undirected or directed) has an even number of vertices with odd degree.
- **Theorem 6.2:** In a directed graph, the sum of the in-degrees of all vertices equals the sum of the out-degrees, and both are equal to the number of $edges(\sum_{i=1}^{n} d^{+}(v_{i}) = \sum_{i=1}^{n} d^{-}(v_{i}) = m)$.
 - **Proof:** Each edge contributes exactly one in-degree and one out-degree.

6.1.2 Vertex Degree and the Handshaking Lemma

- Let the vertex set of an undirected graph G be
 V={v₁, v₂, ..., v_n}.
 - The *degree sequence* of *G*: *d*(*v*₁), *d*(*v*₂), ..., *d*(*v*_n)
- Example:

The degree sequence of Figure 1 is: 4, 4, 2, 1, 3.

Let the vertex set of a directed graph D be

 $V = \{v_1, v_2, ..., v_n\}$

- •The degree sequence of D is: $d(v_1)$, $d(v_2)$, ..., $d(v_n)$
- •The out-degree sequence of D is: $d^+(v_1)$, $d^+(v_2)$, ..., $d^+(v_n)$
- •The *in-degree sequence* of **D** is: $d^-(v_1)$, $d^-(v_2)$, ..., $d^-(v_n)$
- **Example:** In the Figure 2 :
 - Degree sequence :5,3,3,3
 - Out-degree sequence:4,0,2,1
 - In-degree sequence:1,3,1,2

Example 1: Can the following two sets of numbers be the degree sequences of an undirected graph?

(1) 3,3,3,4; **(2)** 1,2,2,3

Solve: (1) No. odd numbers odd degree.

6.1.2 Vertex Degree and the Handshaking Lemma
^L The degree sequence of the graph (e.g.)

- Example 2: Given that graph G has 10 edges and 4 vertices of degree 3, and the degrees of all remaining vertices are less than or equal to 2, what is the minimum number of vertices in G?
- Solution: Suppose graph G has n vertices. By the Handshaking Lemma, if n people each shake hands x times, the total number of handshakes is S = nx/2.

 $4 \times 3 + 2 \times (n-4) \ge 2 \times 10$, Solve $n \ge 8$

Example 3: Given a directed graph of order 5, the degree sequence and out-degree sequence are respectively 3,3,2,3,3, and 1,2,1,2,1. Find its in-degree sequence.
 Solve 2,1,1,1,2

