
5.1 Function Definition and Properties

 5.1.1 Definition of a Function

 5.1.2 Image and Preimage of a Function

 5.1.3 Properties of a Function

5.1.2 Image and Preimage of a Function
⤷ Image and complete preimage of the function

Definition 5.7：Let f:A→B be a function, and let A1⊆A, B1⊆B. Then:
•f(A1)={f(x)∣x∈ A1} is called the image of A1 under f.
In particular, f(A) is called the image of the function.
•f−1(B1)={x∣x∈A∧ f(x) ∈ B1} is called the complete preimage of B1

under f.
 Note :

•A function value f(x)∈B is a point-to-point result, while an image
f(A1)⊆B is a set-to-set transformation.
•A1 ⊆ f−1(f(A1)) :The preimage of the image of A1 may contain more
elements than A1 itself.
•f(f−1(B1))⊆ B1 :Taking the image of the preimage of B1 may not recover
the original set B1.
•A complete preimage is the source of a set of outputs; a preimage
refers to the source of a single output. Both follow the same set
operation rules.

5.1.2 Image and Preimage of a Function
⤷ Image and complete preimage of the function (e.g.)

Examples:

(1) Let f : N→N, and let

A={0,1}, B={2}, then
f(A) = f({0,1}) = { f(0), f(1) }={ 0, 2 }

f(B) = { f(2) } = { 1 }

(2) A={1, 2, 3}, B={a, b, c}, f={<1,a>,<2,a>,<3,b>}，then

•f−1({a,b}) ={1,2,3}, f−1({b,c}) ={3}

•{1}⊂{1,2}=f−1({a})= f−1(f({1})) （Non-injective functions
expand preimages）

• f(f−1({b,c}))=f({3})={b}⊂{b, c} （Non-surjective ones
shrink images ）

𝒇𝒇(𝒙𝒙) = �
𝒙𝒙
𝟐𝟐

𝒊𝒊𝒇𝒇 𝒙𝒙 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

𝒙𝒙 + 𝟏𝟏 𝒊𝒊𝒇𝒇 𝒙𝒙 𝒐𝒐𝒐𝒐𝒐𝒐

5.1 Function Definition and Properties

 5.1.1 Definition of a Function

 5.1.2 Image and Preimage of a Function

 5.1.3 Properties of a Function

• Surjective, Injective, and Bijective Functions

• Constructing a bijective function

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Definitions of Surjective, Injective, and Bijective Functions

Note：
• Surjectivity means: for ∀y ∈B, here exists an x∈A such that f(x)=y.

• Injectivity means: if ：f(x1)=f(x2) ⇒ x1=x2 .

• A surjection ensures full coverage of the codomain, an injection
ensures no duplication in mapping, and a bijection guarantees
reversibility.

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（1） f：R→R, f(x)=−x2+2x−1

Solution: When x=0,2 ，f(x)=-1， so it is not injective .

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（1） f：R→R, f(x)=−x2+2x−1

Solution: When x=0,2 ，f(x)=-1， so it is not injective .

As shown in the figure, the function f
cannot map to any positive real
number, and thus it is neither
surjective nor bijective.

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（2） f： Z+→R, f(x)=lnx, Z+ is the set of positive integers.

Solution:

Solution: f(x) is monotonically
increasing, so it is injective.

Since ranf={ln1,ln2,…} cannot cover
all values in the real number set R, f
is not surjective.

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（3） f : R→Z, f(x)=x

Solution: Every integer f(x) has a
corresponding real number x,
so the function is surjective.
However, different real
numbers may have the same
floor value f(x), so the
function is not injective.

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（4） f : R→R, f(x)=2x+1

Solution:

Surjective, injective,
bijective, because it is
monotonic and the range of
ranf=R

5.1.3 Properties of a Function
⤷ Surjective, Injective, and Bijective Functions(e.g.)

Examples: Determine whether the following functions are injective,
surjective, or bijective, and explain why.
（5） f : R+→R+, f(x)=(x2+1)/x , where R+ is the set of positive real
numbers.

Solution:

The function has a minimum
value f(1)=2. This function is
neither injective nor surjective.

5.1.3 Properties of a Function
⤷Constructing a bijective function (between finite sets)(e.g.)

 Example: A=P({1,2,3}), B={0,1}{1,2,3}

Solve: A={∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
B={f0, f1, … , f7}.

f0={<1,0>,<2,0>,<3,0>}, f1={<1,0>,<2,0>,<3,1>},
f2={<1,0>,<2,1>,<3,0>}, f3={<1,0>,<2,1>,<3,1>},
f4={<1,1>,<2,0>,<3,0>}, f5={<1,1>,<2,0>,<3,1>},
f6={<1,1>,<2,1>,<3,0>}, f7={<1,1>,<2,1>,<3,1>}.

Let f : A→B,
f(∅)=f0, f({1})=f1, f({2})=f2, f({3})=f3,
f({1,2})=f4, f({1,3})=f5, f({2,3})=f6, f({1,2,3})=f7

 Each subset in A is mapped to its characteristic function.
For example, f({2})=f2 , since only element 2 is in the
subset, its characteristic value is (0,1,0).

5.1.3 Properties of a Function
⤷Constructing a bijective function (between real intervals)(e.g.)

 Construction Method: Linear Equation
 Example: A=[0,1] , B=[1/4,1/2]

Construct a bijection f : A→B
Solve: To map A=[0,1] onto B=[1/4,1/2], match the endpoints
and use a straight-line function to create a bijection.
Let f : [0,1]→[1/4,1/2]

f(x)=(x+1)/4

5.1.3 Properties of a Function • Constructing a bijective function
⤷ (between set A and the set of natural numbers)(e.g.)

 Construction Method: Arrange the elements of set A in a specific
order based on a certain criterion. Then, starting from the first
element, map them sequentially to the natural numbers.

 Example: A=Z, B=N，Construct a bijection f : A→B
Solve : Arrange the elements of Z in the following order and
correspond them with the elements of N:

Z：0 −1 1 −2 2 −3 3 …
↓ ↓ ↓ ↓ ↓ ↓ ↓

N：0 1 2 3 4 5 6 …
The function represented by this correspondence is:

𝒇𝒇:𝐙𝐙 → 𝐍𝐍,𝒇𝒇(𝒙𝒙) = �
𝟐𝟐𝒙𝒙 𝒙𝒙 ≥ 𝟎𝟎
−𝟐𝟐𝒙𝒙 − 𝟏𝟏 𝒙𝒙 < 𝟎𝟎

5.1 Function Definition and Properties • Brief summary

Objective :

Key Concepts ：

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

Chapter 5：Function

 5.1 Function Definition and Properties

 5.2 Composition of Functions and Inverse Functions

 5.3 Relational Algebra

5.2 Composition of Functions and Inverse Functions

 5.2.1 Composition of Functions

• The fundamental theorem of function composition and its

corollaries

• Properties of function composition

 5.2.2 Inverse Functions

• Conditions for the existence of an inverse function

• Properties of inverse function

5.2 Composition of Functions and Inverse Functions

⤷ 5.2.1 Composition of Functions
 Theorem 5.1：Let F,G be functions, then the composition F∘G is also

a function and satisfies the following conditions:
(1) dom(F∘G)={ x | x∈domG ∧ G(x)∈domF}

(This describes the relationship between the domains and ranges of
the functions.)

(2) ∀x∈dom(F∘G) ，F∘G(x) = F(G(x))
(This specifies the order of computation for the composite function.)

Note: The composition of functions
is left composition with right-hand
priority, while the composition of
relations is right composition with
left-hand priority.

5.2.1 Composition of Functions

⤷ Function Composition and Mapping Properties

Theorem 5.2： Let f : B→C, g : A→B.

(1) If f , g are surjective, then f∘g : A→C is also
surjective.

(2) If both f , g are injective, then the composition f∘g :
A→C is also injective.

(3) If both f , g are bijective, then the composition f∘g :
A→C is also bijective.

5.2.1 Composition of Functions

⤷ Function Composition and Mapping Properties

Theorem 5.2： Let f : B→C, g : A→B.

(1) If f , g are surjective, then f∘g : A→C is also surjective.

proof : Goal: Prove that for any c∈C, there exists at least one
element a∈A such that (f∘g)(a)=c.

①Since f is surjective, for any c∈C, there exists some b∈B such
that f(b)=c.

②Since g is also surjective, there exists some a∈A such that g(a)=b.

③Given that g(a)=b and f(b)=c, by the definition of function
composition, we have: (f∘g)(a)= f(g(a))=f(b)=c.

Therefore, f∘g : A→C is surjective.

5.2.1 Composition of Functions

⤷ Function Composition and Mapping Properties

Theorem 5.2： Let f : B→C, g : A→B.

(2) If both f , g are injective, then the composition f∘g : A→C is also
injective.

proof : Goal: We need to prove that if x1, x2∈A, x1 ≠ x2, then
f∘g(x1) ≠ f∘g(x2).

①Since g injective, g(x1) ≠ g(x2)，and g(x1) , g(x2) ∈ B=domf。

②Since f injective, we know that f (g(x1)) ≠ f (g(x2)) ，thus
f∘g(x1) ≠ f∘g(x2).

so f∘g : A→C is injective.

5.2 Composition of Functions and Inverse Functions

 5.2.1 Composition of Functions

• The fundamental theorem of function composition and its

corollaries

• Properties of function composition

 5.2.2 Inverse Functions

• Conditions for the existence of an inverse function

• Properties of inverse function

5.2.2 Inverse Functions

⤷ Inverse Function Existence Theorem

Theorem 5.4: Let f : A→B be bijective, so f−1: B→A is also bijective.
Proof:
①Since f is a function, so f−1 is relation, and we have domf −1= ranf =B ,

ranf −1= domf =A.
②For any x∈B, suppose have y1, y2∈A such that <y1,x>∈f−1∧<y2, x>∈f−1 ,

then by the definition of inverse <x,y1>∈f∧<x,y2>∈f. Since f is injective,
it follows that y1=y2, hence f−1 is a well-defined function.

③Also, for every x∈B, there is a unique a∈A such that f(a)=x, so f−1(x)=a,
therefore, f−1 is surjective.

④Now, suppose exist x1, x2∈B such that f−1(x1) = f−1(x2)=y, then we have
<y, x1>∈f−1∧<y, x2>∈f −1 ⇒ <x1,y >∈f ∧<x2,y>∈f ⇒ x1=x2

(Since f is injective function),then proves that f−1 is injective .
Conclusion: Since f−1 is both injective and surjective, f−1 :B→A is a bijective

function.

5.2.2 Inverse Functions
⤷ Find the inverse of a composite function

𝒇𝒇 𝒙𝒙 = �
𝒙𝒙𝟐𝟐 𝒙𝒙 ≥ 𝟑𝟑
−𝟐𝟐 𝒙𝒙 < 𝟑𝟑

,𝒈𝒈(𝒙𝒙) = 𝒙𝒙 + 𝟐𝟐 Example: Let f : R→R, g : R→R,

• Find f ∘g, g∘f.
• If f and g have inverse functions, find their inverses.

Solve :
𝒈𝒈 ∘ 𝒇𝒇: 𝐑𝐑 → 𝐑𝐑 𝒇𝒇 ∘ 𝒈𝒈:𝐑𝐑 → 𝐑𝐑

𝒈𝒈 ∘ 𝒇𝒇(𝒙𝒙) = �
𝒙𝒙𝟐𝟐 + 𝟐𝟐 𝒙𝒙 ≥ 𝟑𝟑
𝟎𝟎 𝒙𝒙 < 𝟑𝟑

𝒇𝒇 ∘ 𝒈𝒈(𝒙𝒙) = �
(𝒙𝒙 + 𝟐𝟐)𝟐𝟐 𝒙𝒙 ≥ 𝟏𝟏
−𝟐𝟐 𝒙𝒙 < 𝟏𝟏

f : R→R does not have an inverse function .

g : R→R inverse function is g−1: R→R, g−1(x)=x−2 .

5.2.2 Inverse Functions
⤷ Identity Composition Theorem of Inverse Functions

The composition of a bijective function and its inverse is the
identity function.

Theorem 5.5: Let f : A→B be a bijective function, then:
f −1∘f = IA, f∘f −1 = IB

Proof:

① According to Theorem 5.4 f −1: B→A is also bijective.

② By the theorem on function composition,f −1∘f : A→A , f∘f −1:
B→B ，and both equal the corresponding identity functions.

③ By the above Therefore, we have: f −1∘f = IA , f∘f −1 = IB.

The left and right compositions of a bijective function and its
inverse are identity functions on their respective sets, and IA is
generally not equal to IB .

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

Chapter 5：Function

 5.1 Function Definition and Properties

 5.2 Composition of Functions and Inverse Functions

 5.3 Relational Algebra

5.3 Relational Algebra

 5.3.1 Relational Algebra and Its Components

• Algebra, Algebraic Systems, and Branches of Algebra

• Relational Algebra and Relational Database Operations

• Relational Model and Relational Database

 5.3.2 Relational Algebra and Its Operations

 5.3.3 Applications of Relational Algebra

5.3.1 Relational Algebra and Its Components
⤷ Algebra, Algebraic Systems, and Branches of Algebra

Algebra is the science of studying operational structures.
Algebraic systems are the stage for these operations.
Algebraic branches are the specific forms performed on that stage.
Algebra
Branch

Algebraic
System Description Applications

Relationa
l Algebra

(R,σ,π,∪,∩,
×,…)

Operations on relations (tables)
in databases

SQL, database query
languages

Boolean
Algebra (B,∨,∧,¬) Logic system over two values

(true/false or sets) Logic design, digital circuits

Linear
Algebra (V,+,⋅) Vector spaces over a field with

scalar multiplication
Physics, machine learning,
data science

Group Theory(G,⋅), Ring Theory(R,+,⋅), Field Theory(F,+,⋅), Automata Algebra State-
transition structures,….

5.3.1 Relational Algebra and Its Components
⤷ Relational Algebra and Relational Database Operations

Relational algebra is an abstract query language used to operate on
relations (tables) in a relational database.

Relational algebra provides the theoretical foundation for query
languages such as SQL.

Relational algebra allows for query optimization and equivalence
transformations.

Relational algebra operates on relations (tables) using a set of
operators—including selection, projection, union, and intersection—and
produces new relations as output.

5.3.1 Relational Algebra and Its Components
⤷ Relational Model and Relational Database

The relational model, proposed by E.F. Codd, is a data model that
represents real-world entities and their relationships using relations
(tables). Each relation consists of rows (tuples) and columns (attributes).

The relational model is the theoretical foundation for building
relational databases. It represents data and relationships using
relations (tables).

Tables and Relations: Each table in a database represents a relation.
Each row in the table (also called a tuple) represents an ordered tuple,
which is a member of the relation.

Relationships Between Elements: Each row in a table represents a
specific association or "relation" between columns (also called
attributes), forming a meaningful set of data.

5.3 Relational Algebra

 5.3.1 Relational Algebra and Its Components

 5.3.2 Relational Algebra Operations

• Basic and Compound Operations in Relational Algebra

• Algebraic Operations of Relational Databases

• Relational Algebra Operations and SQL

 5.3.3 Business Process Modeling and Its Tools (Languages)

5.3.2 Relational algebra operations
⤷ Basic and Compound Operations in Relational Algebra

Relational algebra operations are a subset of relational
operations. They form a formal, algebraic system for constructing
and optimizing queries.

Relational algebra operations are a set of closed operations,
where both the input and the result are relations (tables). They
form the theoretical foundation of the SQL query language.

Relational algebra consists of basic and derived operations.
Derived operations are constructed by combining basic ones.

The basic operations include Selection, Projection, Union,
Difference, Cartesian Product, and Rename.

The Derived operations include Join, Natural Join, Theta Join,
and Division.

5.3.2 Relational algebra operations

⤷ Basic Operations in Relational Algebra

Selection(σ): Selects all tuples from a relation that satisfy a
given condition.

Projection(π): Creates a new relation by selecting specific
columns from an existing relation.

Union(∪): Combines two relations with the same attributes
into a single relation, denoted as R ∪ S。

Set Difference(–): Removes the elements of one relation from
another, denoted as R – S。

Cartesian Product(×): Forms all possible combinations of
tuples from two relations, denoted as R × S。

5.3.2 Relational algebra operations
⤷ Compound Operations in Relational Algebra

Rename(ρ): Changes the names of attributes in a relation.

Natural Join(⨝): Merges two relations based on their common attributes,
denoted as R ⨝ S。

 Intersection(∩) ：R ∩ S is not a basic operation in relational algebra, but it
can be constructed using union and set difference: R ∩ S =（ R ∪ S）-（R - S）
-（S - R）.

 Structured Query Language (SQL) is a practical implementation of relational
algebra and relational calculus, enabling operations such as intersection,
querying, insertion, updating, and deletion in relational databases.

5.3.2 Relational Algebra Operations
⤷ Algebraic Operations of Relational Databases

Data Tables in Databases as Relations

A relation is a set of tuples, where each tuple <A1,A2,…,An>
represents a relation with n attributes.

Example: ⟨ID, Name, Age, Address, Phone, Email⟩
Let R and S be m-ary relations with the same attributes,
where the m attributes are denoted as A1,A2,…,Am， The
basic operations are as follows:

R ∪ S contains tuples from both R and S.

R ∩ S contains tuples that are present in both R and S；
R - S contains tuples that are in R but not in S.

Projection 𝝅𝝅𝑨𝑨𝐢𝐢𝟏𝟏,,𝑨𝑨𝒊𝒊𝟐𝟐 ,...,𝑨𝑨𝒊𝒊𝒆𝒆(𝑹𝑹) Select only certain columns

𝑨𝑨𝒊𝒊𝟏𝟏 ,𝑨𝑨𝒊𝒊𝟐𝟐 , . . . ,𝑨𝑨𝒊𝒊𝒆𝒆 from R form a new relation.

5.3.2 Relational Algebra Operations
⤷ Algebraic Operations of Relational Databases(e.g.)

Example: R:Employee Information

πName,Phone,Email (R) The query result is selecting the columns Name, Phone,
and Email.

Name Age Address Phone Email
Zhang Wei 28 Zhongguancun, Beijing 13812345678 zhangwei@exa.com
Li Ting 32 Pudong, Shanghai 13987654321 liting@exa.com
Wang Qiang 45 Tianhe, Guangzhou 13722223333 wangqiang@exa.com
Zhao Xiaolin 26 Jinjiang, Chengdu 13611114444 zhaoxiaolin@exa.com

Name Phone Email
Zhang Wei 13812345678 zhangwei@exa.com
Li Ting 13987654321 liting@exa.com
Wang Qiang 13722223333 wangqiang@exa.com
Zhao Xiaolin 13611114444 zhaoxiaolin@exa.com

5.3.2 Relational Algebra Operations
⤷ Relational Algebra Operations and SQL(e.g.)

Example: ⟨ID, Name, Age, Address, Phone, Email⟩
Let R and S be m-ary relations with the same attributes.

R ∪ S :
SELECT * FROM R UNION SELECT * FROM S;

R ∩ S :
SELECT * FROM R INTERSECT SELECT * FROM S;

R - S :

SELECT * FROM R EXCEPT SELECT * FROM S;

πName,Phone,Email (R) :

SELECT Name, Phone, Email FROM R;

5.3.2 Applications of Relational Algebra
⤷ Algebraic Operations of Relational Databases(e.g.)

The Cartesian Product R×S is a set consisting of m×n tuples
of the form <A1,…,Am,B1,…,Bn> where the tuples have m+n
attributes.

Example: R={<1,abc>,<2,cabel>}，

S={<cabel,300,25>,<sin,190,15>,<cod,60,5>}，

R×S={<1,abc,cabel,300,25>,<1,abc,sin,190,15>,

<1,abc,cod,60,5>,<2,cabel,cabel,300,25>,

<2,cabel,sin,190,15>,<2,cabel,cod,60,5>}

R×S : SELECT * FROM R CROSS JOIN S；

5.3 Relational Algebra

 5.3.1 Relational Algebra and Its Components

 5.3.2 Relational Algebra Operations

 5.3.3 Business Process Modeling and Its Tools (Languages)

• Business Process Modeling Tools

• Workflow Net and Its Components

• WF-net Transition Types

• Formal Definition of WF-net

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ Business Process Modeling Tools

 Business Process Modeling (BPM) is a method for graphically
representing internal processes within an organization.

 BPM is an interdisciplinary application of several branches of
discrete mathematics—such as graph theory, logic, and automata
theory—and represents an advanced application level of system
behavior modeling based on discrete mathematics.

 Popular Business Process Modeling Tools and Languages:
• Petri Nets
• Workflow Net
• UML Activity Diagrams
• BPMN（Business Process Model and Notation）
• EPC（Event-driven Process Chain）

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ Workflow Net and Its Components

 Petri Net is a mathematical modeling language consisting of
places, transitions, and tokens. It can accurately describe
and analyze the dynamic behavior of complex systems.

 A WF-net is a specialized Petri net that adds start and end
constraints for workflows, using sets, relations, and functions
to enhance business process modeling and analysis.

 WF-net Components:
Component Symbol / Notation Description

Place P ○ condition or state
Transition T ▭ activity or task
Flow Relation F → control flow connection
Start Place i ○（no input） start place
End Place o ○（no output） end place
Net Definition N = (P, T, F) triple of P, T, and F

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ Workflow Net(e.g.)

p1

p2

p3

p4

p5

p6

T2

T3

T4

T5

T6

T7

i• T1 o

p7

p8 p9T8 T9

T10

T11

T12

T13 T14

T1: Receive the paper, invite three
reviewers.

T2,T4,T6 ,T13: Receive review
comments on time.

T3,T5,T7,T14: Do not receive review
comments on time; ；
T8: Summarize review comments.

T9: Decide whether to accept the
paper; ；
T10: Accept the paper; ；
T11: Reject the paper; ；
T12: Re-invite other reviewers ；

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ WF-net Transition Types

WF-net Transition Types：
Type Structure Description

Normal One input → One output Executes a single task in sequence
AND-split One input → Multiple outputs Starts parallel branches
AND-join Multiple inputs → One output Waits for all branches to continue
XOR-split One input → One of several outputs Selects one path based on condition
XOR-join One of several inputs → One output Any path completes to proceed
Loop Output reconnects to earlier place Repeats a task until condition met
Cancel/Inter
rupt Interrupts flow End a process branch prematurely

 WF-net Control-flow Operator Symbols：

(AND-split) (AND-join) (XOR-join)(XOR-split)

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ WF-net Transition e.g.)

Place Set P：
i： Start ；
o：End
p1, p2,p3, …, p7 : Intermediate places

Meaning of Transition Set T：
T1: Register
T2: Send out survey
T3: Process survey
T4: Handle expiration
T5: Evaluate complaints
T6: Handle complaints
T7: Check processing results
T8: Archive

5.3.4 Business Process Modeling and Its Tools (Languages)
⤷ Formal Definition of WF-net

WF_net is a triple <P,T,F>，P: Set of places, T: Set of
transitions, F: Flow relation.
(1) P∩T=∅；(2) P∪T≠∅；(3) F⊆P×T∪T×P；

(4) domF∪ranF=P∪T，where domF={x |∃y(<x,y>∈F)}，
ranF={y |∃x(<x,y>∈F)}；

(5) There exists a starting place i∈P，such that •i=∅，

•i ={j |<j,i>∈F} is the pre-set of i；

(6) There exists an ending place o∈P，such that o•=∅，

o•={j |<o,j>∈F} is the post-set of o；

(7) Each node x∈P∪T,lies on a path from I to o.

5.3 Relational Algebra• Brief summary

Objective :

Key Concepts ：

Chapter 5：Function • Brief summary

Objective :

Key Concepts ：

	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	�Discrete Mathematics 2025 Spring�
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	�Discrete Mathematics 2025 Spring�
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 40
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55

