

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

5.1 Function Definition and Properties

- 5.2 Composition of Functions and Inverse Functions
- 5.3 Relational Algebra

5.1.1 Definition of a Function

- Equality of functions
- Function's domain, range, and direction
- Surjective, Injective, and Bijective Functions
- Function Sets and Counting
- Constant, Identity, and Monotonic Functions
- Natural mapping
- Equivalence relation's impact on natural mapping
- The order of a complexity function
- 5.1.2 Image and Preimage of a Function
- 5.1.3 Properties of a Function

Definition 5.1: *function*

Let f be a binary relation. If for every $\forall x \in \text{dom} f$ there exists a unique $y \in \text{ran} f$ such that x f y holds, then f is called a *function*. For a function f, if x f y, we denote this as y=f(x), and y s called the value of f at x.

For example:

$$f_1 = \{ < x_1, y_1 >, < x_2, y_2 >, < x_3, y_2 > \}$$

$$f_2 = \{ < x_1, y_1 >, < x_1, y_2 > \}$$

 f_1 is a function, but f_2 is not a function.

Definition 5.2: Equality of functions Let *f*, *g* be functions. Then, *f*, *g* are equal if and only if their set representations are equal: $f=g \Leftrightarrow f \subseteq g \land g \subseteq f$

If two functions *f* and *g* are equal, the following two conditions must be satisfied:

(1) domf = domg(2) $\forall x \in \text{dom}f = \text{dom}g$ we have f(x) = g(x)

Example: $f(x)=(x^2-1)/(x+1)$, g(x)=x-1These functions are not equal because dom $f \subset$ domg.

- **Definition 5.3:** function *f*:*A*→*B*
 - Let A and B be sets. If
 - (1) *f* is a function,
 - (2) $\operatorname{dom} f = A \operatorname{and}$
 - (3) ran $f \subseteq B$,

then f is called a function from A to B, denoted by $f : A \rightarrow B$.

Examples:

- $f: N \rightarrow N$, f(x)=2x is a function from N to N
- $g: N \rightarrow N, g(x)=2$ is also a function from N to N

Definition 5.4: Let $f : A \rightarrow B$

- A function $f:A \rightarrow B$ is subjective (onto) if and only if for every $b \in B$, there exists an $a \in A$ such that f(a)=b.
- function $f:A \rightarrow B$ is *injective* if and only if for all $a, b \in A$, we have $f(a)=f(b)\Rightarrow a=b.$
- If $f:A \rightarrow B$ is both surjective and injective, then it is called a *bijective* function (or **bijection**).

Examples:

Surjective

Bijective (Injective Injective but not and Surjective)

Surjective but not Injective

Neither Surjective nor Injective

5.1.1 Definition of a FunctionFunction Sets and Counting

Definition 5.5: The set of all functions from A to B is denoted by B^A, read as "B to the power of A" In symbolic form:

 $B^{A} = \{ f \mid f : A \rightarrow B \}$

Counting B^A:

- |A|=m, |B|=n, and m, n>0, $|B^{A}|=n^{m}$.
- $A=\emptyset$, then $B^A=B^{\emptyset}=\{\emptyset\}$.

The function set contains only one element: the empty function. $|B^{\emptyset}| = 1$

• $A \neq \emptyset$ and $B = \emptyset$, then $B^A = \emptyset^A = \emptyset$.

here is no function from a non-empty set to the empty set. $|\mathcal{Q}^A|=0$

5.1.1 Definition of a Function **Determining Function Sets**

• Example: Let $A = \{1, 2, 3\}, B = \{a, b\}, \text{ solve } B^A$. **Solve:** Find all possible functions from **A** to **B**. $B^{A} = \{ f_{0}, f_{1}, \dots, f_{7} \}, \text{ then }$ $f_0 = \{ <1, a >, <2, a >, <3, a > \}$ $f_1 = \{ <1, a >, <2, a >, <3, b > \}$ $f_2 = \{ <1, a >, <2, b >, <3, a > \}$ $f_3 = \{ <1, a >, <2, b >, <3, b > \}$ $f_{a} = \{ <1, b >, <2, a >, <3, a > \}$ $f_5 = \{ <1, b >, <2, a >, <3, b > \}$ $f_6 = \{ <1, b >, <2, b >, <3, a > \}$ $f_7 = \{ <1, b >, <2, b >, <3, b > \}$

Definition 5.6:

- (1) Let $f: A \rightarrow B$, If there exists a constant $c \in B$ such that for all $x \in A$, f(x)=c, then $f: A \rightarrow B$ is called a *constant function*.
- (2) The identity relation I_A on A is called the *identity function* on A, where for all $x \in A$, $I_A(x) = x$.
- (3) Let <A, ≤>, <B, ≤> be partially ordered sets, f: A→B called monotonically increasing (or simply monotonic) if for any x₁, x₂∈A, x₁≺x₂, ⇒ f(x₁) ≤ f(x₂);
 - strictly monotonically increasing if for any $x_1, x_2 \in A, x_1 \prec x_2, \Rightarrow f(x_1) \prec f(x_2)$.
 - Similarly, monotonically decreasing and strictly monotonically decreasing functions can be defined in the same manner.

5.1.1 Definition of a Function **Characteristic function of a set**

(4) Let A be a set. For any subset $A' \subseteq A$, the *characteristic function* $\chi_{A'}: A \rightarrow \{0,1\}$ is defined as follows:

$$\chi_{A'}(a) = \begin{cases} 1, & a \in A' \\ 0, & a \in A - A' \end{cases}$$

Example: let A={a,b,c}, Each subset A' of A corresponds to a characteristic function, and different subsets correspond to different characteristic functions. Such as :

 $\chi_{\varnothing} = \{ < a, 0 >, < b, 0 >, < c, 0 > \}$ $\chi_{\{a,b\}} = \{ < a, 1 >, < b, 1 >, < c, 0 > \}$

The characteristic function of a set is a detector that determines whether an element belongs to the set; it is also known as an indicator function that represents whether an event occurs.

5.1.1 Definition of a Function **Natural mapping**

(5) Let R be an equivalence relation on A. Define

 $g: A \rightarrow A/R$ $g(a) = [a], \forall a \in A$

Then g is called the *natural mapping* (function) from A to the

quotient set A/R.

5.1.1 Definition of a Function **Gamma Content Second Se**

- Given a set A and an equivalence relation R on A, a natural mapping $g: A \rightarrow A/R$ can be determined.
- Natural mappings vary with the equivalence relation:
 - •The identity relation yields a bijection.
 - •Others equivalence relations are generally surjections only.
- **Example:** Let *A*={1, 2, 3},
 - •Equivalence relation : $R_1 = \{<1, 2>, <2, 1>\} \cup I_A$
 - Natural mapping : $g_1(1) = g_1(2) = \{1,2\}, g_1(3) = \{3\}$
 - •Equivalence relation: I_A

Natural mapping: $g_2(1) = \{1\}, g_2(2) = \{2\}, g_2(3) = \{3\}$

- $W: Z^+ \rightarrow Z^+$ be the *time complexity function* of an algorithm. It is a discrete, monotonically increasing function defined on positive integers.
- The meaning of *W(n)*: For an input of size *n*, the number of basic operations executed by the algorithm in the **worst case** is *W(n)*.
- Asymptotic notation for the order of a complexity function f(n): $f(n)=O(g(n)) \Leftrightarrow f(n)$ is no more than that of g(n) $f(n)=\Theta(g(n)) \Leftrightarrow f(n)=O(g(n))$ and g(n)=O(f(n))
- **Examples:** $f(n)=n^2+n=\Theta(n^2)$, $g(n)=n\log n=O(n^2)$ (Here, logn is shorthand for $\log_2 n$)

```
Algorithms: Binary search: W(n)=O(logn)
```

Merge sort: W(n)=O(nlogn)

- **5.1.1** Definition of a Function
- **5.1.2** Image and Preimage of a Function
- 5.1.3 Properties of a Function

