第二章 关系数据库

- 60年代,信息代数和集合论数据结构
- 70年代, E.F.Codd系列论文: 关系模型的严格定义

 "A Relational Model of Data for shared data banks"
- IBM公司: 70年代末, IBM370实验系统System R (历时6年)
 1981年, IBM公司数据库产品 SQL/DS问世
- 加州大学柏克利分校的实验系统 INGRES INGRES公司的数据库产品 INGRES
- 其他: DB2、Oracle、Sybase、Informix 等商业产品问世
- ◆ 本章内容: 关系数据结构/完整性约束/关系操作

2.1 关系数据结构的形式化定义

一、关系的形式化定义

- 1、域 (Domain): 一组具有相同数据类型的值的集合.
- 2、笛卡尔积 (Cartesian Product)
- 给定一组域D₁, D₂,, D_n, 这些域中可以有相同的
- D₁、D₂、.....、D_n 的笛卡尔积为:

$$D_1 \times D_2 \times ... \times D_n = \{ (d_1, d_2, ..., d_n) \mid d_i \in D_i, i=1, 2, ..., n \}$$

- 3、n元组 (n-tuple) : 每一个元素 (d₁, d₂, ..., d_n) 称一个元组
- 4、分量(Component):元组中的每一个值d_i,称为一个分量
- 5、基数M: 元组的个数

$$M = m_1 \times m_2 \times ... \times m_n$$

(mi 为 Di 的基数: 域中取值不同的元素个数

域和笛卡尔积举例

D1

导师 张清玫 刘逸

D2

专业 计算机专业 信息专业

D3

学生李勇刘晨王敏

D1	D2	D3
张清玫	计算机专业	李勇
张清玫	计算机专业	刘晨
张清玫	计算机专业	王敏
张清玫	信息专业	李勇
张清玫	信息专业	刘晨
张清玫	信息专业	王敏
刘逸	计算机专业	李勇
刘逸	计算机专业	刘晨
刘逸	计算机专业	王敏
刘逸	信息专业	李勇
刘逸	信息专业	刘晨
刘逸	信息专业	王敏

(张清玫, 计算机专业, 李勇) 称为一个三元组

人员
甲
Z
丙
T

D2 病人 P1 P2 P3

时间
2022/01/01 09:10:29
2022/01/01 09:11:10
2022/01/01 09:15:20

 $D_2 \times D_1 \times D_1 \times D_3$

D2 [病人]	D1 [医生]	D1 [药剂师]	D3 发药时间
P1	甲	甲	2022/01/01 09:10:29
P1	甲	乙	2022/01/01 09:11:10
P1	甲	丙	2022/01/01 09:10:29
P1	甲	丁	2022/01/01 09:11:10
P2	乙	甲	2022/01/01 09:10:29
P2	乙	乙	2022/01/01 09:11:10
P2	乙	丙	2022/01/01 09:10:29
P2	乙	T	2022/01/01 09:11:10
Р3	丙	甲	2022/01/01 09:10:29
Р3	丙	乙	2022/01/01 09:11:10
Р3	丙	丙	2022/01/01 09:10:29
Р3	丙	T	2022/01/01 09:11:10
••••	••••	••••	•••••

一、关系的形式化定义

6、关系 (Relation)

- 定义: D₁×D₂×…×D_n的子集称为D₁, D₂, ……, D_n上的关系, 表示为 R(D₁, D₂, …, D_n), 这里 R表示关系的名字, N是关系的目或度
- 定义的限定与扩充
 - > 关系是有限集合
 - > 列是无序的,通过属性名来区分
- 相关概念:元组、属性、候选码、主码
 - 主属性、非主属性、全码关系
- 关系分类:基本关系,查询表,视图表

笛卡尔积和关系举例

D1	D2	D3
张清玫	计算机专业	李勇
张清玫	计算机专业	刘晨
张清玫	计算机专业	王敏
张清玫	信息专业	李勇
张清玫	信息专业	刘晨
张清玫	信息专业	王敏
刘逸	计算机专业	李勇
刘逸	计算机专业	刘晨
刘逸	计算机专业	王敏
刘逸	信息专业	李勇
刘逸	信息专业	刘晨
刘逸	信息专业	王敏

导师	专 业	学生
张清玫	计算机专业	李勇
张清玫	计算机专业	刘晨
刘逸	信息专业	王敏

概念理解

- ・元组
- ・属性
- 候选码
- ・主码
- ・主属性【码属性】
- ・非主属性【非码属性】

D ₂ >	$\mathbf{D_1} \times \mathbf{D_1} \times \mathbf{D_1}$	D ₃	20:49
D2	D1	D1	D 3
P1	甲	甲	2022/01/01 09:10:29
P1	甲	Z	2022/01/01 09:11:10
P1	甲	丙	2022/01/01 09:10:29
P1	甲	丁	2022/01/01 09:11:10
P2	Z	甲	2022/01/01 09:10:29
P2	Z	Z	2022/01/01 09:11:10
P2	Z	丙	2022/01/01 09:10:29
P2	Z	丁	2022/01/01 09:11:10
••••	• • • • • •	••••	•••••
病人	医生	药剂师	发药时间

D3	3		
		时间]
	2	2022/01/01	09:10:29
	2	2022/01/01	09:11:10
	2	2022/01/01	09:15:20

人员

甲

乙

丙

T

病人

P1

P2

P3

D1

D2

病人	医生	药剂师	发药时间
P1	甲	丙	2022/01/01 09:10:29
P2	Z	丁	2022/01/01 09:11:10
••••	•••••	•••••	•••••

练习: 寻找下述关系的码、码属性、非码属性

Student

Sno	SID	Sname	Sgender	Sdept
S001	110103*****1211	宋杰	男	IS
S002	110108*****0011	武潭	男	IS
S003	220102****1212	李丽	女	IS

SC

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	76

一、关系的形式化定义

7、关系的性质

- ① 列同质,同一列中的分量来自同一个域
- ② 不同的列可来自同一个域
- ③ 列无序
- ④ 不能有相同的元组
- ⑤ 行无序
- ⑥ 分量必须取原子值

二、关系模式(Relation Schema)

- 1、定义: 关系的描述称为关系模式
- 2、形式化描述: R (U, D, Dom, F) 或 R (U)
 - R: 关系名
 - U: 属性名集合
 - D: 属性组U中属性所来自的域
 - Dom:属性向域的映射集合
 - F: 属性间数据的依赖关系

3、关系与关系模式

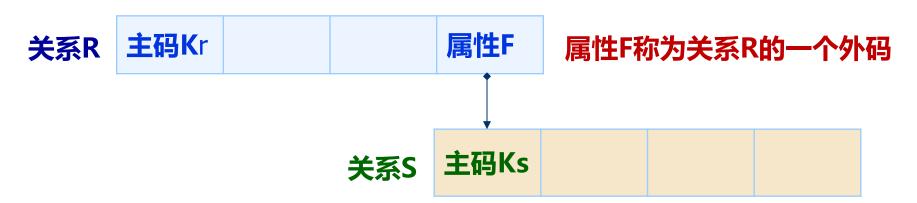
- 关系模式:型,静态的、稳定的
- 关系:值,动态的、变化的

三、关系数据库

- 给定应用领域,描述其中实体和实体联系的关系集合,构成 一个关系数据库,区分型与值
- 数据库的型:若干域的定义、域上定义的若干关系模式【数据库三级模式结构中的逻辑模式】
- 数据库的值:关系模式在某一时刻对应的关系的集合

2.2 关系的完整性

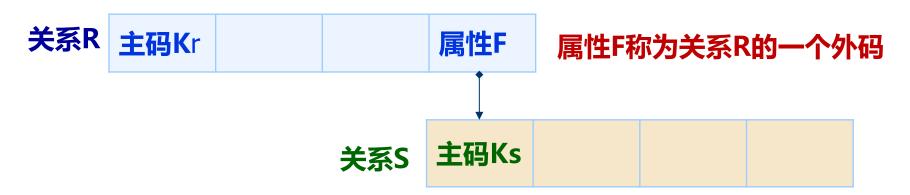
- 一、实体完整性:关系的第一个不变性
- 1、规则:若属性A是基本关系R的主属性,则A不能取空值。
 - 本规则针对基本关系而言
 - 现实世界中的实体是可区分的,具有唯一标识
 - 在关系模型中,码是实体的唯一性标识
 - 码中属性(即主属性)不能取空值,否则存在不可标识的实体
 - 码的取值不能重复,否则就存在了两个一样的实体


SNO	CNO	Grade
S001	8001	75
S001	null	80
null	8002	60
S001	8001	72

这三个元组有什么问题?

二、参照完整性:关系的第二个不变性

1、外码 (Foreign Key)


- 设F是基本关系R的一个或一组属性,但不是关系R的码
- 如果F与基本关系S的主码K_S相对应,则称F是基本关系R的外码,
 称R为参照关系,S为被参照关系或目标关系
- 关系R与S可以是相同的关系

二、参照完整性:关系的第二个不变性

2、参照完整性规则

- 若属性或属性组F是基本关系R的外码,它与基本关系S的主码K_S相对应(关系R与S不一定是不同的关系),则对于R的每个元组在F上的值必须为:
 - (1) 或者为空值
 - (2) 或者等于S中的某个元组的主码值

Deptment

参照完整性举例

Student

dept	name
IS	信息系统系
CS	计算机系
BM	工商管理系

Sno	Sname	Sgender	Sdept	Sage	Mno
S001	宋杰	男	IS	20	S003
S002	武潭	男	IS	20	NULL
S003	李丽	女	IS	18	S004
S101	王佟	男	NULL	22	S102
S102	谢明	男	NULL	21	S102
S103	宋静	女	NULL	20	S102
S201	凯林	男	MA	19	S201
S202	张梅	女	MA	21	S201
S203	李靖	女	MA	19	NULL

问题:

- · student中谁是外码?
- · student中哪些元组 违背参照完整性

	SC			
Sno	Cno	Grade		
S001	8003	90		
S002	8001	80		
S002	NULL	70		
S 003	8001	76		
S101	9001	86		

Student

Sno	Sname	SGender	Sdept
S001	宋杰	男	IS
S002	武潭	男	IS
S 003	李丽	女	IS
S101	凯林	男	MA

Course

Cno	Cname	Cpno	Ccredit
8001	Α	8002	2.5
8002	В	9001	3
9001	С	NULL	4

思考

- 1、在SC中, sno和cno的取值有什么约束?
- 2、一个关系中, 主码有几个? 外码有几个?

2.2 关系的完整性

三、用户自定义的完整性

- 反映具体应用所涉及的数据必须满足的语义要求,例如:
 - > 学生的课程成绩: 取值范围是0-100
 - **课程学分 = (学时/8) * 0.5**
 - **~ 个人工资不大于平均工资的5倍**
 - > 学生类型:本科、硕士、博士
- 关系模型应采用统一的系统的方法处理此类完整性

2.3 关系操作

一、基本概念

- 1、操作类型
- 查询(query) 插入(insert) 删除(delete) 修改(update)
- 2、运算要素:运算对象、运算符、运算结果
- 运算对象和运算结果:关系
- 运算符
 - 集合运算符: ∩ U ×
 - 专门的关系运算符: σ □ ∞ ÷

 - 逻辑运算符: ^ V ¬
- 3、关系运算的类型:集合运算、专门的关系运算

2.3 关系操作

二、关系操作语言

- 1、关系代数
- 用关系运算来表达关系操作能力的一种抽象语言,如ISBL语言
 σ_{student.sno=sc.sno Λ cno='2'} (Student×SC) --检索选修2号课程的学生

2、关系演算

- 元组关系演算: 谓词变元是元组变量,如APLHA语言
 S_{IS} = {t | Student (t) ∧ t[4] = 'IS'} --检索IS系学生
- **域关系演算: 谓词变元是域变量, 如QBE语言** { t₁t₂t₃t₄ | Student (t₁t₂t₃t₄) ∧ t₃ = 18 ∧ t₄ = 'IS'} --检索IS系18岁学生

关系代数、元组关系演算、域关系演算在表达能力上是等价的

3、SQL语言

■ 介于关系代数和关系演算之间的结构化查询语言,国际标准语言

2.4 关系代数

一、传统的集合运算

```
1、 #: R \cup S = { t | t\inR \vee t\inS}
```

3、交:
$$R \cap S = \{t \mid t \in R \land t \in S\}$$

4、广义笛卡尔积:
$$R \times S = \{ t_r t_s \mid t_r \in R \land t_s \in S \}$$

R	Α	В	С
	a1	b1	c 1
	a1	b2	c2
	a2	b2	c1

5	A	В	C
	a1	b2	c2
	a1	b3	c2
	a2	b2	c1

$\mathbf{R}\,\cup\,\mathbf{S}$

R.A	R.B	R.C	S.A	S.B	S.C
a1	b1	c1	a1	b2	c2
a1	b1	c1	a1	b 3	c2
a1	b1	c1	a2	b2	c1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b3	c2
a1	b2	c2	a2	b2	c1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1

$\mathbf{R} \cup \mathbf{S}$

Α	В	C
a1	b1	c 1
a1	b2	c2
a2	b2	c1
a1	b3	c2

$R \cap S$

Α	В	C
a1	b2	c2
a2	b2	c1

R - **S**

Α	В	С
a1	b1	с1

Sno	Sname	SGender	Sdept
S001	宋杰	男	IS
S002	武潭	男	IS
S003	李丽	女	IS

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	76

20:49

student × sc

			3003	0001	70	
Student.Sno	Sname	SGender	Sdept	SC.Sno	Cno	Grade
S001	宋杰	男	IS	S001	8002	90
S001	宋杰	男	IS	S002	8001	80
S001	宋杰	男	IS	S002	8002	70
S001	宋杰	男	IS	S003	8001	76
S002	武潭	男	IS	S001	8002	90
S002	武潭	男	IS	S002	8001	80
S002	武潭	男	IS	S002	8002	70
S002	武潭	男	IS	S003	8001	76
S003	李丽	女	IS	S001	8002	90
S003	李丽	女	IS	S002	8001	80
S003	李丽	女	IS	S002	8002	70
S003	李丽	女	IS	S003	8001	76

- 1、已知关系 R(A₁, A₂,, A_n) , 常用记号表示
- t∈R: t 是 关系 R 的一个元组
- t[A_i]: 元组 t 与属性 A_i 对应的分量
- 设 A={A_{i1}, A_{i2},, A_{ik}} 是属性子集
 t[A] = (t[A_{i1}], t[A_{i2}], ..., t[A_{ik}]): 元组 t 在A上诸分量的集合
 Ā: 表示 {A₁, A₂,, A_n} 去掉 A 后剩余的属性组
- R为n目关系,S为m目关系,t_r∈R,t_s∈S
 - t_rt_s:元组的连接,一个n+m元组,前n个分量为R的一个n元组, 后m个分量为S的一个m元组

2、选择 (Selection)

- $\sigma_F(R) = \{ t \mid t \in R \land F(t) = ' \not\equiv' \}$
- 例子: σ_{sname= '李静'} (Student)
- 例子: σ_{Cno= '8001' ∧ Grade >= 90} (SC)
- F是一个逻辑表达式,σ运算返回使F为真的R中元组

3、投影 (Projection)

- $\blacksquare \sqcap_{A}(R) = \{ t[A] \mid t \in R \}$
- 例子: ∏ _{sname, sage} (Student)
- 例子: ∏ _{sno, Grade} (SC)

注意: 投影运算的结果将取消重复元组

Sno	Sname	SGender	sage	Sdept
S001	宋杰	男	18	IS
S002	武潭	男	19	CS
S003	李丽	女	20	IS

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S 003	8001	76

例子: 检索信息系统系学生的学号、姓名、年龄

例子: 检索信息系统系所有男同学的学号, 姓名、年龄

例子:检索信息系统系学生选修8002号课程的姓名、成绩

```
\prod_{\text{sno, sname, sage}} (\sigma_{\text{sdept='IS'}}, (Student))
```

$$\Pi_{\text{sno, sname, sage}}$$
 ($\sigma_{\text{sdept='IS'} \land \text{sgaender='}}$, (Student))

$$\prod_{\text{sname, grade}} (\sigma_{\text{student.sno=sc.sno} \land \text{sdept='IS'} \land \text{cno='8002'}} (\text{Student} \times \text{SC}))$$

$$\prod_{\text{sname, grade}} (\sigma_{\text{student.sno=sc.sno}} ((\sigma_{\text{sdept='IS'}}, (\text{Student})) \times (\sigma_{\text{cno='8002'}}, (\text{SC})))$$

例子: 检索信息系统系学生选修8002号课程的姓名、成绩

 $\prod_{\text{sname, grade}} (\sigma_{\text{student.sno}=\text{sc.sno} \land \text{sdept= 'IS'} \land \text{cno= '8002'} (\text{Student} \times \text{SC}))$

Student.Sno	Sname	SGender	Sdept	Sc.sno	Cno	Grade
S001	宋杰	男	IS	S001	8002	90
S001	宋杰	男	IS	S002	8001	80
S001	宋杰	男	IS	S002	8002	70
S001	宋杰	男	IS	S003	8001	76
S002	武潭	男	CS	S001	8002	90
S002	武潭	男	CS	S002	8001	80
S002	武潭	男	CS	S002	8002	70
S002	武潭	男	CS	S003	8001	76
S003	李丽	女	IS	S001	8002	90
S003	李丽	女	IS	S002	8001	80
S003	李丽	女	IS	S002	8002	70
S003	李丽	女	IS	S003	8001	76

例子: 检索信息系统系学生选修8002号课程的姓名、成绩

 $\prod_{\text{sname, grade}} (\sigma_{\text{student.sno=sc.sno}} ((\sigma_{\text{sdept='IS'}}, (\text{Student})) \times (\sigma_{\text{cno='8002'}}, (\text{SC})))$

Student.Sno	Sname	SGender	Sdept	Sc.sno	Cno	Grade
S001	宋杰	男	IS	S001	8002	90
S001	宋杰	男	IS	S002	8002	70
S003	李丽	女	IS	S001	8002	90
S003	李丽	女	IS	S002	8002	70

4、连接 (Join)

- 连接操作:将两个有关联的关系,按一定条件横向连接起来
- 连接类型:一般连接、等值连接、自然连接

(1)
$$R \propto S = \{ t_r t_s \mid t_r \in R \land t_s \in S \land t_r[A] \theta t_s[B] \}$$
 [一般连接]

(2)
$$\underset{A=B}{\mathsf{R}} \otimes \mathsf{S} = \{ \widehat{\mathsf{t}_r \, \mathsf{t}_s} \mid \mathsf{t}_r \in \mathsf{R} \land \mathsf{t}_s \in \mathsf{S} \land \mathsf{t}_r[\mathsf{A}] = \mathsf{t}_s[\mathsf{B}] \}$$
 [等值连接]

(3)
$$R ∞ S = \{ t_r t_s [U-B] \mid t_r ∈ R \land t_s ∈ S \land t_r [B] = t_s [B]$$
 [自然连接]

自然连接

- **一种特殊的等值连接**
- 两个关系有同名的属性(子集),在同名属性(子集)上连接
- 结果去掉重复列

连接运算举例

R

Α	В	С
a1	b1	5
a1	b2	6
a2	b3	8
a2	b4	12

è	٠		٠	i	
				١	
١		7	١	Ĺ	
ı		Þ		,	
		-	ł		

В	E
b1	3
b2	7
b 3	10
b 3	2
b5	2

R	∞	S
	[<	E

A	R.B	С	S.B	E
a1	b1	5	b2	7
a1	b1	5	b3	10
a1	b2	6	b2	7
a1	b2	6	b3	10
a2	b 3	8	b3	10

 $R \propto S$ R.B=S.B

A	R.B	С	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b3	10
a2	b3	8	b3	2

 $R \infty S$

A	В	С	E
a1	b1	5	3
a1	b2	6	7
a2	b3	8	10
a2	b3	8	2

Sno	Sname	SGender	Sdept
S001	宋杰	男	IS
S002	武潭	男	CS
S003	李丽	女	IS
S101	凯林	男	MA

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	76
S101	9001	86

Student ∞ **SC**

Sno	Sname	SGender	Sdept	Cno	Grade
S001	宋杰	男	IS	8002	90
S002	武潭	男	CS	8001	80
S002	武潭	男	CS	8002	70
S003	李丽	女	IS	8001	76
S101	凯林	男	MA	9001	86

例子: 检索信息系统系学生选修8002号课程的姓名、成绩

 $\prod_{\text{sname, Grade}} (\sigma_{\text{sdept}= 'IS' \land Cno= '8002'} (\text{Student} \otimes \text{SC}))$

例子: 检索信息系统系学生选修8002号课程的姓名、成绩

 $\Pi_{\text{sname, Grade}} (\sigma_{\text{sdept}= 'IS' \land Cno= '8002'} (\text{Student} \otimes \text{SC}))$

$$\prod_{\text{sno,Grade}} ((\sigma_{\text{sdept= 'IS'}} \text{ (Student)}) \infty (\sigma_{\text{Cno= '8002'}} \text{ (SC)}))$$

Sno	Sname	SGender	Sdept
S001	宋杰	男	IS
S002	武潭	男	CS
S003	李丽	女	IS
S101	凯林	男	MA

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	76
S101	9001	86

Sno	Sname	SGender	Sdept	Cno	Grade
S001	宋杰	男	IS	8002	90

Sno	Sname	SGender	Sdept
S001	宋杰	男	IS
S002	武潭	男	CS
S003	李丽	女	IS
S101	凯林	男	MA

Cno	Cname	Cpno	Ccredit
8001	Α	8002	2.5
8002	В	9001	3
9001	С	null	4

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	76
S101	9001	86

Student ∞ SC ∞ course

Student ∞ course ∞ SC ?

course ∞ SC ∞ Student ?

Sno	Sname	SGender	Sdept	Cno	Cname	Cpno	Ccredit	Grade
S001	宋杰	男	IS	8002	В	9001	3	90
S002	武潭	男	CS	8001	Α	8002	2.5	80
S002	武潭	男	CS	8002	В	9001	3	70
S003	李丽	女	IS	8001	Α	8002	2.5	76
S101	凯林	男	MA	9001	С	null	4	86

已知:仓库(仓库号,城市,面积)

职工(职工编号,工资,仓库号)

检索: 在上海工作的职工编号, 职工工资

解1: Π_{职工编号, 工资}(σ_{城市 = '上海'}(仓库)∞ 职工)

解2: Π_{职工编号, 工资}(σ_{城市 = '上海'}(仓库 ∞ 职工))

5、象集与除法 (Division)

(1) 象集: 给定关系R(X, Z), X 和 Z 为属性组

■ t[X] = x 时, x在R中的象集为:

■ $Z_x = \{ t[Z] | t \in R \land t[X] = x \}$

已知:选课关系SC,

x = 's001' Z_x 的具体意义?

x= '8001' Z_x的具体意义?

Sno	Cno	Grade
S001	8002	70
S002	8001	65
S002	8002	80
S003	8001	68
S003	8002	68

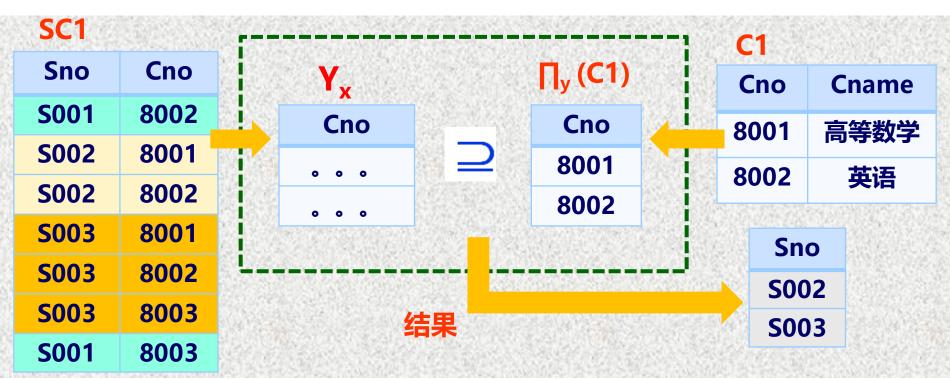
8003

S001

SC

69

 $Z_x = \{ t[Z] \mid t \in \mathbb{R} \land t[X] = x \}$


(2) 除法: 已知: R(X, Y) 和 S(Y, Z), X、Y、Z为属性组

 $R \div S = \{ t_r[X] \mid t_r \in R \land \prod_v (S) \subseteq Y_x \}$

例子: 查询选修了C1表中全部课程的学生号码

SC1 ÷ C1 = ?
 X: Sno Y: Cno

Z: Cname

问题1: 在SC1 ÷ C1 中, C1的属性能否扩展?

20:49

 $SC1 \div C1 = ?$

SC1 ÷ Course = ?

SC1	Sno	Cno
	S001	8002
	S002	8001
	S002	8002
	S003	8001
	S 003	8002
	S001	8003

C1

Cno	Cname
8001	高等数学
8002	英语

SC1

Sno	Cno
S001	8002
S002	8001
S002	8002
S003	8001
S003	8002
S001	8003

Course

•

Cno	Cname	Credit	dept	C_type
8001	高等数学	2.5	MIS	必修
8002	英语	2.5	MIS	必修

Z变化、X和Y不变,∏ _y (Course) 和 Y_x不变

问题2: 在SC1 ÷ C1 中, SC1的属性能否扩展?

20:49

SC ÷ **C1**

SC ÷ Course = ?

SC

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	75
S003	8002	75
S001	8003	85

C1

Cno	Cname
8001	高等数学
8002	英语

SC

Sno	Cno	Grade
S001	8002	90
S002	8001	80
S002	8002	70
S003	8001	75
S003	8002	75
S001	8003	85

Course

•

Cno	Cname	Credit	dept	C_type
8001	高等数学	2.5	MIS	必修
8002	英语	2.5	MIS	必修

Y不变,但X变化,Yx随之变化

练习:查询已经选修了MIS专业所有必修课的学生学号、姓名

$$\Pi_{\text{sno, sname}}$$
 (student ∞ ($\Pi_{\text{sno, cno}}$ (SC) ÷ ($\sigma_{\text{dept = 'MIS'} \land C_{\text{type = '}} ⋄ (\text{course }))))$

Sno	Cno
S001	8002
S002	8001
S002	8002
S002	9001
S002	8003
S003	8001
S 003	8002

Course

Cno	Cname	Credit	dept	C_type
8001	MIS	2.5	MIS	必修
8002	DB	2.5	MIS	必修
9001	Math	2	Math	必修
8003	Java	2	MIS	选修

三、关系代数扩展

- 1、赋值运算: R1← R2
- Temp1 $\leftarrow \prod_{\text{sno, sname}}$ (student)
- Temp2 ← (Temp1 × S) R
- 2、广义投影运算: ∏_{F1, F2, Fn}(R)
- R是任意的关系模式,F_i是由R的属性和常量组成的算术表达式
- 例子: ∏_{title, price * 10% + 15} (Book)
- 3、集函数运算: max、min、avg、sum、count
- min_{price}(Book) max_{price}(Book)
- avg_{price}(Book) sum_{price}(Book)
- count_{price}(Book)

三、关系代数扩展

- **4、插入运算**: R ← R ∪ Expression
 - R: 表示关系
 - Expression: 关系代数表达式, 插入检索结果 (多个元组)
 - Expression: 一个元组常量,插入单个元组
 - 例: Book ← Book ∪ ('7-111-07670-2' , '电磁场理论' , 363, '电子' , 42, '机械工业出版社')
- 5、删除运算: R ← R Expression
- 例: Book ← Book σ_{price≥60}(Book)

6、修改运算

- 形式1: 修改操作看成是由删除和插入运算组成的复合操作
 - R ← R Expression1
 - R ← R ∪ Expression2
- 形式2: 广义投影+赋值
 - $ightharpoonup R \leftarrow \prod_{F1, F2, ..., Fn} (R)$
 - ▶ 若属性 R_i 不需要修改,则F_i 直接为属性 R_i
 - 若属性 R_j 需要修改,则F_j 是常量和R中属性构成的表达式,该表达式给出了该属性的新值
- 例:Book ← ∏ ISBN, title, pageNumber, bookType, price*0.8, pressName(Book)

练习

已知: Student(Sno, Sname, SGender, Sage, Sdept)

Course(Cno, Cname, Cpno, Ccredit)

SC(Sno, Cno, Grade)

检索: 选修8001号课程的学生姓名

S002号学生不及格课程的课程编号、课程名称和成绩

选修了"数据库"课程的学生姓名

查询至少选修了003号学生选修的全部课程的学生学号、姓名

SC

Sno	Cno	Grade
S001	8002	70
S002	8001	65
S002	8002	80
S002	9001	90
S002	8003	88
S003	8001	68
S003	8002	68

Sno	Cno
S001	8002
S002	8001
S002	8002
S002	9001
S002	8003
S003	8001
S003	8002

∏ _{sno, cno} (SC)

$$\prod_{cno} (\sigma_{sno='003'} (sc))$$

Cno
8001
8002

$$\Pi_{\text{sno, sname}}$$
 (student ∞ ($\Pi_{\text{sno, cno}}$ (SC) ÷ Π_{cno} ($\sigma_{\text{sno='003'}}$ (sc)))