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Life is a dynamic optimization which consists of a series of trade-offs in making deci-

sions where one important factor that must be considered is "Opportunity Cost".
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ABSTRACT

The core task in passenger transportation systems planning can be described as one of

matching the network-wide demand with adequate capacity by deploying resources over

the corresponding parts of the network. A significant challenge inherent in this task is the

uncertainty in demand and supply in transportation systems. Demand uncertainty manifests

itself in the form of the passenger choice behavior. Supply uncertainty presents itself as

delays and disruptions in resource availability. This thesis tackles a set of three related

research questions within passenger transportation systems while explicitly incorporating

the inherent uncertainty in both demand and supply during the planning phases of air and

urban transportation systems.

Flight delay propagation results in enormous additional operating costs for the airlines,

passengers and the aviation system as a whole. The first part of this thesis is focused on

proposing, optimizing and validating a methodological framework for estimating the extent

of crew-propagated delays and disruptions. We identify the factors that influence the extent

of crew-propagated delays, and incorporate them into a robust crew scheduling model. We

then develop a fast heuristic approach for solving the inverse of this robust crew scheduling

problem to generate crew schedules that are similar to real-world crew scheduling samples.

Along with various other findings, our results show that airlines avoid up to 80% of crew-

related delays through advanced planning methods.

The second part of this thesis introduces an original integrated optimization approach to

comprehensive flight timetabling and fleet assignment under endogenous passenger choice.

The resulting optimization model is formulated as a large-scale mixed-integer linear pro-

gram. We propose an original multi-phase solution approach, which effectively combines

several heuristics, to optimize the network-wide timetable of a major airline within a re-

alistic computational budget. Using case study data from Alaska Airlines, computational

results suggest that the combination of this model formulation and solution approach can

result in significant profit improvements, as compared to the most advanced existing ap-
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proaches to flight timetabling. Additional computational experiments based on several

extensions also demonstrate the benefits of this modeling and computational framework

to support various types of strategic airline decision-making in the context of frequency

planning, revenue management, and post-merger integration.

With the soaring popularity of ride-hailing, the interdependence between transit rid-

ership, ride-hailing ridership and urban congestion motivates the following question: can

public transit and ride-hailing co-exist and thrive in a way that enhances the urban trans-

portation ecosystem as a whole? To answer this question, in the third part of this thesis,

we develop a mathematical and computational framework that optimizes transit schedules,

while explicitly accounting for their impacts on road congestion and passengers’ mode

choice between transit and ride-hailing. The problem is formulated as a mixed-integer

nonlinear program, and solved using a bi-level decomposition algorithm. Based on com-

putational case study experiments in New York City, our optimized transit schedules con-

sistently lead to 0.4-3% system-wide cost reduction. This amounts to rush hour savings of

millions of dollars per day, while simultaneously reducing the costs to passengers and to

transportation service providers. These benefits are driven by a better alignment of avail-

able transportation options with passengers’ preferences—by re-distributing public transit

resources where it provides the strongest societal benefits. These results are robust to un-

derlying assumptions about passenger demand, transit level of service, the dynamics of

ride-hailing operations, and transit fare structures. Ultimately, by explicitly accounting

for ride-hailing competition, passengers’ preferences and traffic congestion, transit agen-

cies can develop schedules that lower costs for passengers, operators and the system as a

whole—a rare win-win-win outcome.
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Chapter 1

Introduction

Passenger transportation systems are an integral part of our lives and an important pillar

of the global economy. The degree of availability, quality, reliability and affordability of

passenger transportation shapes our personal, professional and social experiences. A large

proportion of intercity passenger travel is related to the daily commute between home and

work, which underscores the value of adequate planning of urban transportation systems for

short-distance travel. On the other hand, air travel is the dominant mode for long-distance

intercity travel especially in the United States, which highlights the need for efficient air

transportation systems planning. This thesis is focused on three related challenges associ-

ated with air and urban public transportation systems planning.

Within air transportation, the airline schedule planning process primarily determines

the performance of the air transportation system. This process consists of a variety of

decision-making steps including schedule design, fleet assignment, aircraft routing and

crew scheduling, which are typically carried out sequentially. Chapters 2 and 3 of this

thesis are focused on the airline planning process, with particular emphasis on schedule

design (also known as timetabling), fleet assignment and crew scheduling steps.

Efficiently operated urban public transit is the key to a well-performing urban trans-

portation system. Public transit planning is typically performed in a sequence of steps
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including network design, line planning, and timetabling [77]. More recently, the ride-

hailing services are also playing an increasingly important role in urban transportation sys-

tems. Chapter 4 of this thesis is focused on urban public transit planning with a particular

emphasis on timetabling, while explicitly accounting for the interactions with ride-hailing

services and traffic congestion.

In this chapter, we first discuss the uncertainty in scheduled transportation systems from

both demand and supply sides. Then, in Section 1.3, we present the main contributions of

thesis. Finally, Section 1.4 outlines the structure of the rest of the thesis.

1.1 Demand Uncertainty: Passenger Choice Behavior

Demand uncertainty manifests itself in the form of the passengers’ demand patterns and

choice behavior. The number of passengers interested in traveling and the fraction of them

interested in choosing a particular travel option are both dependent on a variety of attributes

of the available travel alternatives as well as on each passenger’s own personal characteris-

tics. However, the relationship between these attributes of the available travel alternatives

and the passengers’ choice decisions is highly complex, nonlinear and fraught with uncer-

tainty. Psychologists and behavioral economists have striven to understand and quantify

these relationships for several decades, with considerable success. Yet, examples of suc-

cessful explicit incorporation of these quantitative relationships into transportation systems

optimization models are rare and computationally intractable. This is a challenge that we

attempt to overcome in this thesis.

For example, an airline’s profitability is heavily driven by its ability to attract passen-

gers under competition from other airlines. Many attributes of an airline’s schedule of-

ferings, like flight departure times, flight arrival times, assigned aircraft types, number of

connections in the offered passenger itineraries, and ticket prices, significantly affect the

passenger demand for the airline. As a result, airlines have a strong motivation to explicitly
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incorporate these passenger demand dynamics within their timetabling and fleet assign-

ment approaches. Another example, from an urban transportation standpoint, is that of a

public transit system trying to redesign its schedule in the face of competition from ride-

hailing services. In the recent years, ride-hailing services have attracted a lot of passengers

away from public transit leading to a reduction in public transit demand. Compared to

traditional public transit services, modern app-based ride-hailing operators (such as Uber)

offer several distinct advantages such as convenient door-to-door service, cashless transac-

tions, competitive pricing and access to a broad pool of drivers. Hence, there is a need for

public transit systems to incorporate these new and evolving passenger demand dynamics

into their planning and scheduling practices to reinvent and sustain these systems of vital

societal importance. We attempt to do just that in this thesis.

1.2 Supply Uncertainty: Flight Disruptions and Urban Traf-

fic Congestion

Supply uncertainty presents itself as delays and disruptions to resource availability. Grow-

ing congestion and delays throughout the passenger transportation systems not only im-

poses large costs on the transportation service operators, transportation infrastructure man-

agers, and passengers, but also are a serious threat to our overall quality of life. Transporta-

tion delays, disruptions and congestion are estimated to cost the world economy hundreds

billions of dollars annually.

In the aviation domain, flight delays and disruptions result in annual economic losses

worth tens of billions of dollars. These additional costs include direct costs to airlines and

passengers, as well as indirect costs like lost demand and reduced labor productivity. The

US Federal Aviation Administration (FAA) estimated the annual costs of flight delays in

2017 to be $26.6 billion [122]. These delays and disruptions are caused by a variety of

factors including airport congestion, mechanical problems, baggage delays, delays due to
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late arriving aircraft, delays due to late arriving crew, security delays, etc. The Bureau of

Transportation Statistics categorizes delays into various categories related to these delay

causes [30]. However, these public datasets lack a dedicated category for delays due to

the propagation of upstream crew delays and disruptions. There exists a considerable body

of literature and rich public datasets on the travel and delay patterns of aircraft and pas-

sengers. The equivalent travel and delay patterns for airline crew, however, are lacking.

There is a lack of publicly available information about not only the crew-propagated delays

and disruptions (CPDD), but also the crew itineraries themselves. The estimates of crew

itineraries or even a validated methodology to come up with such estimates is not available.

We address these gaps in this thesis.

In the ground transportation domain, a report from the Center for Economics and Busi-

ness Research (CEBR) and INRIX (a leading international provider of real-time traffic in-

formation) estimated the road traffic congestion cost in US to be $124 billion for year 2013

and that number would be up to $185 billion in 2030 [71]. Recently, many reports have

claimed that the ride-hailing services are not just accelerating the decline of public transit

in the US, but also contributing significantly to the worsening urban road congestion. This

thesis focuses on developing models and methods to alleviate a part of these concerns by

better scheduling of transit systems.

1.3 Thesis Contributions

This research makes the following three sets of contributions.

1.3.1 Chapter 2: Modeling Crew Itineraries and Delays in the Na-

tional Air Transportation System

This chapter makes the following four main contributions. First, we propose a comprehen-

sive airline crew pairing optimization model formulation that minimizes the combination
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of planned crew costs and the various features that make the crew schedules vulnerable to

propagation of delays and disruptions. Second, we solve this model to near optimality by

combining known ideas such as branch-and-bound and delayed column generation as well

as a sequence of new heuristic ideas developed by us. The sizes of the networks in the prob-

lem instances solved by us far exceed those solved in past studies on robust or recoverable

crew pairing optimization. Third, we embed this crew pairing generation problem within

an upper-level calibration framework wherein a parameterized crew pairing optimization

problem is solved repeatedly by varying the parameters until the resulting crew pairings

are similar to those used by the airlines. This upper-level calibration problem represents

the inverse of the crew pairing generation problem. We employ a local-search heuristic for

solving the upper-level calibration problem. Our algorithm is motivated by that of Schae-

fer et al. [111] and borrows some features from theirs. Ours, however, is the first study

to formulate and solve this inverse crew pairing generation problem. Finally, we generate

and validate crew pairing solutions that are similar to those used by the airlines in the real

world in terms of their potential for the crew-propagated delays and disruptions (CPDD).

The out-of-sample testing results demonstrate the accuracy and stability of our modeling

framework and algorithms. An important finding is that the ratio between the planned crew

cost and approximate delay costs is found to be stable across airlines and aircraft types.

1.3.2 Chapter 3: Airline Timetable Development and Fleet Assign-

ment Incorporating Passenger Choice

This chapter develops and applies an original modeling and algorithmic approach that inte-

grates airlines’ comprehensive timetable development and fleet assignment decisions under

endogenous passenger choice. Our model formulation leverages the concept of a sales-

based linear programming model from the airline revenue management literature [59]. Our

approach contrasts with the existing literature in three major ways. First, our timetabling

model does not involve only incremental timetabling decisions using an existing timetable
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as a starting point. Instead, it addresses the comprehensive timetabling problem starting

from a clean slate. Second, it captures the endogeneity of passengers’ booking decisions

through a discrete-choice model, unlike most existing incremental approaches that assume

the passenger demand to be invariant with marginal timetabling adjustments. Third, it de-

velops a suite of computational algorithms that enable solving the integrated model for

problem instances of realistic sizes and deriving practical insights from computational ex-

periments. Specifically, this chapter makes the following four contributions.

1. It incorporates a sales-based linear programming framework to accurately capture the

itinerary-level demand substitution effects into a comprehensive timetable develop-

ment and fleet assignment optimization model. The resulting model is formulated as

a mixed-integer linear program (MILP). To our knowledge, ours is the first research

study to capture an airline’s comprehensive timetable development problem under

passenger choice.

2. We design an effective multi-phase solution approach to solve this model for large-

scale problem instances. We demonstrate that, by narrowing down the flight’s depar-

ture time range step-by-step, a high quality solution could be obtained within reason-

able computational run-times—even though the model is intractable with commercial

solvers. Additionally, we develop several variable-fixing and symmetry-inducing ac-

celerated heuristics that are shown to obtain an even better solution. We embed these

approaches within our multi-phase MILP framework.

3. We present a detailed comparison of our integrated comprehensive approach with the

various incremental timetable development approaches found in the literature and in

practice, using a major U.S. legacy airline carrier’s network. We validate that our

modeling and algorithmic framework can yield significant profit improvements for

major airlines.

4. We perform additional case studies under modeling, computational and practical ex-

6



tensions to provide several practical insights and demonstrate the benefits of this

modeling and computational framework. These extensions provide computational

tools for strategic decision-making in the contexts of frequency planning, revenue

management, and post-merger integration.

1.3.3 Chapter 4: Transit Planning Optimization under Ride-hailing

Competition and Traffic Congestion

This chapter makes the following three main contributions. First, it develops a mathe-

matical model that optimizes public transit schedules (including frequency and timetabling

on each line) while capturing the alternatives provided by ride-hailing, passengers’ travel

mode choices, vehicle flows in road networks, and traffic congestion. On the demand side,

we consider a discrete choice model where travelers choose a transportation option based

on prices, travel times and other attributes. We leverage the Generalized Attraction Model

(GAM) from Gallego et al. [59] to integrate this discrete choice model into our optimiza-

tion model. On the supply side, we leverage a traffic equilibrium model that estimates

vehicle flows and resulting congestion on road networks, as a function of public transit

schedules and travelers’ mode choices. The problem is formulated as a mixed-integer non-

linear program (MINLP). To our knowledge, this is the first study that optimizes public

transit schedules while capturing interdependencies with ride-hailing and traffic conges-

tion. Second, it designs an original bi-level algorithm that yields high-quality solutions

to this MINLP in reasonable computational times. It includes two interconnected proce-

dures. An outer loop optimizes public transit schedules, given travelers’ mode choices and

estimates of traffic congestion on road networks. Given a transit schedule, an inner loop

leverages a user-equilibrium traffic flow model to replicate the paths of ride-hailing vehi-

cles and update traffic congestion levels—by fitting a high-resolution polynomial curve to

data-driven estimates of travel times. Through these two procedures, we iteratively update,

until convergence, public transit schedules, travelers’ mode choices, vehicle flows on road
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networks, and traffic congestion. Third, it performs case study experiments in New York

City to evaluate the tractability and performance of our modeling and solution framework.

Computationally, our bi-level algorithm converges in reasonable runtimes, spanning 8–15

hours. Practically, our optimized transit schedules lead to 0.4−3% system-wide cost reduc-

tion, as compared to the actual schedule. This amounts to rush hour savings of millions of

dollars per day, while simultaneously reducing costs to passengers and transportation ser-

vice providers. These benefits are driven by a better alignment of available transportation

options with passengers’ preferences and ride-hailing services. These results are robust

to underlying assumptions about passenger demand, transit level-of-service requirements,

the dynamics of ride-hailing operations, and transit fare structures. Ultimately, by explic-

itly accounting for ride-hailing competition, passengers’ preferences and traffic congestion,

transit agencies can develop schedules that lower costs for passengers, operators and the

system as a whole—a rare win-win-win outcome.

1.4 Organization of the Thesis

The remainder of this thesis consists of four more chapters. Chapter 2 focuses on identi-

fying the nature, extent and causes of propagation of delays and disruptions through crew

connections. It particularly tackles the supply-side uncertainty within the context of air

transportation systems planning. Chapter 3 focuses on generating optimal airline timetables

and fleet assignments by incorporating passenger choice to improve airline’s profitability.

It particularly tackles the demand-side uncertainty within the context of air transportation

systems planning. Chapter 4 focuses on optimizing transit timetables by accounting for

passenger choice, ride-hailing competition, and traffic congestion. It tackles the demand-

as well as supply-side uncertainty within the context of urban transportation systems plan-

ning. Finally, Chapter 5 concludes the thesis and provides directions for future research.
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Chapter 2

Modeling Crew Itineraries and Delays in

the National Air Transportation System

2.1 Motivation

Flight delays and disruptions cost tens of billions of dollars annually to the world econ-

omy. The total cost of flight delays in the U.S. in 2007 was especially large, estimated to be

approximately 31.2 billion [13]. Even though the data from the Bureau of Transportation

Statistics (BTS) shows that the level of flight delays has somewhat reduced since its 2007

peak, delay costs still represent considerable amount of resource wastage for the U.S. Na-

tional Air Transportation System, resulting in profit reductions or losses to the airlines and

additional inconvenience to the passengers. Over the first half of this decade, that is, from

January 1st 2011 to December 31st 2015, only 79.21% of the domestic flights in the U.S.

had a delay of 15 minutes or less [28]. During the same period, 1.68% of the U.S. domestic

flights were canceled.

Determining the causes of flight delays and disruptions has been a topic of considerable

interest among researchers and policymakers: see Allan et al. [7] for an early example. The

U.S. Department of Transportation (DOT) classifies flight delays into five main categories.
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They are Air Carrier Delays, Late Arriving Aircraft Delays, National Aviation System De-

lays, Extreme Weather Delays, and Security Delays. Between Jan 1st 2011 and Dec 31st

2015, Air Carrier Delays (defined as those within the control of the airline, such as those

due to maintenance or crew problems, aircraft cleaning, baggage loading, fueling, etc.)

accounted for nearly 32% of all flight delays, while another 34% were attributed to Late

Arriving Aircraft Delays (those due to late arrival of the previous flights using the same

aircraft) and about 31% were classified as the National Aviation System Delays (defined

as those due to non-extreme weather conditions, airport operations, heavy traffic volume,

air traffic control, etc). However, this public data lacks a dedicated category for flight de-

lays due to the propagation of upstream crew delays and disruptions. Delayed or disrupted

flights may generate delays and disruptions to subsequent flights because the crew for those

flights is delayed, out of position, or unable to operate the scheduled flights without violat-

ing government regulations or collective bargaining agreements (CBAs). Presently, these

delays (henceforth called as the Crew-Propagated Delays and Disruptions in this chapter

or CPDD for short) are considered to be a subset of the rather broad category of Air Car-

rier Delays. Accurate estimation of the CPDD is critical not only as a step toward fully

understanding the aviation system performance, but also for informing government policy

and air carrier decisions related to airline crew scheduling. In this chapter, we develop

an approach to estimate the crew-propagated delays and disruptions, which are similar in

concept to the aircraft-related delays and disruptions reported by the DOT’s Late Arriving

Aircraft Delays category.

There is yet another motivation for conducting this research. Public data sources lack

information about not only the CPDD, but also the crew itineraries themselves. Many of

the past studies related to flight delay propagation assume knowledge of aircraft connec-

tions, crew connections, and passenger connections. There is a large amount of literature

focusing on airline recovery optimization (see Petersen et al. [106], for a recent example,

and Barnhart et al. [20] for a detailed review) which uses aircraft, crew and passenger
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schedules as inputs to their computational case studies. There is also a growing body of

literature on various strategies for airport congestion mitigation (e.g., [75, 141, 132, 154]),

which assumes the knowledge of aircraft, crew and passenger connections. A report by

the Office of Inspector General (2010) acknowledges that despite the significance of delay

propagation effects, their extent and nature is not well quantified or understood, partly due

to the limitations of the existing data. Several past studies have focused on analyzing the

extent of flight delay propagation using a variety of approaches such as analytical queuing

models [108], delay propagation trees [4], and statistical models. These studies have also

highlighted the importance of the availability of aircraft, crew and passenger connections

data.

However, only the aircraft connections information is available publicly through the

BTS (Bureau of Transportation Statistics) website. A prior study by Barnhart et al. [20]

used a statistical approach to estimate passenger itineraries, passenger delays and disrup-

tions. But similar estimates of crew itineraries or even a validated methodology to come up

with such estimates is not available. Apart from aiding in future research studies such as

those mentioned above, such estimates of crew itineraries would also be beneficial for as-

sessing the full impact of any delay mitigation strategy being considered by airlines and/or

government. In this chapter, similar to the work on passenger itinerary and delays esti-

mation by Barnhart et al. [20], we develop a crew itinerary estimation methodology to

generate a database of estimated crew itineraries that will enable accurate estimation of the

crew-propagated delays and disruptions (CPDD) consistent with their real-world values.

Note that we do not attempt to develop an approach to generate crew itineraries that are

identical to the real-world airline crew itineraries in every possible aspect. Such objective

would not only be extremely difficult to attain, but also likely cause overfitting issues based

on the limited confidential data samples which we use for the estimation purposes. Instead,

we develop a robust process to generate crew itineraries that are similar to the real-world

airline crew itineraries in their potential for causing the crew-propagated delays and dis-
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ruptions. There are possibly other, non-delay related, aspects of crew itineraries that could

be of relevance for other purposes. However, the focus of this chapter is to ensure that our

process is accurate and stable in terms of the CPDD estimation.

The CPDD for an airline during a particular time period are strongly dependent on

the chosen set of crew pairings. Crew pairing is defined as a sequence of flights covered

by a crew member that follows a number of regulations, and can be considered to be the

smallest self-contained unit comprising crew itineraries. Thus, estimating crew pairings is

at the core of the challenge of estimating the CPDD. A crew pairing problem is the one

of generating a set of crew pairings that covers all available flights legs. Crew pairing

decisions have a significant effect on airlines’ planned and operational costs. Operational

costs include delay and disruption costs due to irregular operations, and are amplified by

their propagation through crew connections. Thus, understanding the extent, causes and

impacts of propagation of delays and disruptions is essential for developing methods to

reduce them and to improve the overall aviation system performance. Previous research

studies on crew pairing generation have focused on minimizing the planned crew costs, and

sometimes a subset of the various components of operational costs, but none of them have

focused on quantifying and understanding the CPDD in the real-world airline networks.

Therefore, there is a need to develop approaches and models that produce crew schedules

that are similar to the real-world crew schedules in terms of the CPDD.

Finally, we note that the present research project was originally motivated and funded

by an aircraft delay modeling limitation faced by the U.S. Federal Aviation Administra-

tion’s (FAA) Office of Performance Analysis. The FAA analyzes and forecasts, on a

monthly basis, aircraft delays at the nation’s major airports, with the objective of identi-

fying airports with significant potential for delays months in advance, so that appropriate

actions may be taken to prevent or mitigate such delays. A discrete events simulation plat-

form developed by the FAA for this purpose models aircraft-based delay propagation using

public data on aircraft itineraries [28], but does not account for crew-based propagation
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effects due to the lack of crew itinerary data. This is believed to contribute to an underesti-

mation of the propagated delays, and served as the motivation for conducting the research

work presented in this chapter.

2.1.1 Crew-Pairing Optimization Problem

A crew pairing consists of a sequence of duties, where a duty is defined as the set of tasks to

be performed by a crew member during a given day. Duties are connected by rest periods.

Each duty is made up of a set of consecutive flights with some gaps between them. These

gaps are called sit times. A pairing should begin and end at a crew base which is usually

the domicile of a crew member. Both pairings and duties are subject to various regulations

and contractual restrictions. Typically, these include the following.

• The total flying time within a duty cannot exceed an upper bound. There is also an

upper bound on the total elapsed time within a duty.

• There is a lower bound on the sit time which guarantees that the crew has enough

time to connect between two consecutive flights within a duty.

• The rest time between duties should be greater than or equal to a minimum rest time

which ensures that the crew is sufficiently rested between duties.

• There is typically an upper limit on the number of duties within a pairing.

In addition to these rules, even when ignoring the operational cost considerations, crew

pairings also have a highly non-linear pay structure. Note that the crew pay is commonly

expressed in the units of hours of crew flying, which we will use throughout this chapter.

For a typical North American airline, the planned cost of a pairing p is the maximum of

two terms: sum of the costs Cd of all its duties and a fixed fraction (ζ) of the total time

away from base (TAFBp). Thus the planned cost of a pairing p (measured in the units of
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hours of crew flying) is given by

cp = max(
∑
d

Cd, ζ ∗ TAFBp) (2.1)

For each duty d, the planned cost (Cd) is the maximum of three terms, a minimum guar-

anteed pay (δ) per duty, flying hour (flyd) of the duty, and a fixed fraction (ε) of the duty

elapsed time (elpasedd). Parameters δ, ε, ζ may vary across different carriers. Thus the

planned cost of duty d (measured in the units of hours of crew flying) can be written as

cd = max(δ, f lyd, ε ∗ elapsedd) (2.2)

The objective of the deterministic crew pairing problem is to minimize the planned crew

cost and is usually modeled as a set partitioning problem [15]. We denote the set of flights

by F and the set of pairings by P . alp is 1 if pairing p contains flight i and 0 otherwise.

xp is a binary decision variable which equals 1 if pairing p is chosen in the crew pairing

solution, and 0 otherwise. Then, the crew pairing problem can be formulated (ignoring

crew deadheads) as

Min
∑
p∈P

(cp ∗ xp)

subject to:
∑
p∈P

(aipxp) = 1,∀i ∈ F, (2.3)

xp ∈ (0, 1),∀p ∈ P, (2.4)

2.1.2 Literature Review

As mentioned earlier, from an application perspective, our work is motivated by the work

of Barnhart et al. [20]. Using one year of flight delay data and a one-quarter sample of

confidential passenger booking data from an airline, they estimated passenger itinerary

flows and developed insights into the factors that affect the performance of the U.S. national
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air transportation system from a passenger perspective. They developed a methodology

to model historical travel and delays for passengers. From a methodological perspective

however, our work is fundamentally different from theirs. While they used a statistical

approach to estimate passenger itineraries, estimation of crew itineraries is considerably

more complicated because of the complex rules governing what constitutes a legal crew

itinerary. Thus, a statistical estimation approach is unsuitable for our task. Also, while the

number of possible passenger itineraries per day can be in the thousands for a large airline,

the number of legal crew itineraries is usually larger by several orders of magnitude, often

making it very difficult or impossible to even enumerate all of them exhaustively.

Estimating delay propagation through crew connections is also much more complex

than estimating the same through aircraft connections due to the more complex nature

of crew work regulations than aircraft maintenance regulations. Several past studies on

crew pairing optimization have tried to identify and capture one or more dimensions of

a crew schedule that affect the extent of propagation. Broadly, these past studies can be

divided into three main categories. First category of studies aims to incorporate one or

more features that affect the ease of recovering the crew schedules after a disruption. Here,

crew schedule recovery refers to the set of reactive measures available to an airline to bring

its crew schedule back on track after a disruption and it typically includes alternatives such

as delayed flight departures, crew swaps, reserve crews, flight cancellations, etc. Second

category of studies aims to generate crew pairings that are difficult to get disrupted and/or

have a low disruption cost. Studies in the first and second categories deal exclusively with

crew schedules without capturing the relationship between crew-based and aircraft-based

propagation. The third category attempts to capture this interdependence.

Studies in the first category usually focus only on one or two specific factors that im-

prove recovery potential. Shebalov and Klabjan [116] maximize the number of move-up

crews, wherein a move-up crew for a flight is a crew that is not actually assigned to that

flight but can be feasibly and legally assigned to it. On the other hand, Gao et al. [60]
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extend the fleet purity idea proposed by Smith and Johnson [125] to crew base purity. The

crew base purity idea restricts the number of crew bases allowed to serve each airport in

order to increase the opportunities to find a move-up crew in crew recovery. Shebalov and

Klabjan [116] as well as Gao et al. [60] capture the potential for crew swaps, which is an

important dimension of crew recovery process, but do not explicitly capture the extent of

delay propagation through crew connections.

Studies in the second category apply a variety of robust planning approaches to airline

crew scheduling. Lu and Gzara [90] developed a non-linear robust optimization model for

balancing planned and operational crew costs for a simplified crew pay structure focused

solely on the Time Away From Base (TAFB). Yen and Birge [152] develop a two-stage

stochastic programming model that implements a simplified recovery model for the second

stage. Schaefer et al. [111] adjust the cost of each crew pairing to include a combination

of planned costs and a linear approximation of delay costs. The delay cost approximation

function is fine-tuned based on a discrete events simulation software named SimAir [110].

The delay cost is assumed to be a function of four attributes, namely, 1) the sit time between

consecutive flights within a duty, 2) the rest time between consecutive duties, 3) the total

flying time in a duty, and 4) the total elapsed time in a duty. The rationale behind these

choices is that the potential for the propagation of delays and disruptions is greater when

the crew’s sit and rest times are too short and when the per-duty flying and elapsed times

are too long. Yen and Birge [152] as well as Schaefer et al. [111] account for the differences

in the delay propagation potential of different crew pairings, but neither captures recovery

actions such as crew swaps.

Because delays can propagate due to both late arriving/unavailable aircraft and late

arriving/unavailable crew, there are many interdependencies between the effects of aircraft

schedules and crew schedules on the propagation of delays and disruptions through the

overall flight network. The aircraft scheduling and crew scheduling stages of the airline

schedule planning process are conventionally solved in a sequential manner. However,
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recognizing the interdependencies between the two stages, in terms of the planned costs

and delay propagation potential, some recent studies (such as Dunbar et al. [51] and Weide

et al. [147]) have developed integrated robust optimization models. Weide et al. [147]

attempt to increase the buffer in crew connection times when the crew changes aircraft.

Dunbar et al. [51] solve an integrated fleet assignment, aircraft routing and crew pairing

problem with a weighted average objective function that incorporates robustness solely as

measured by the number of aircraft changes between successive flights in a crew itinerary.

Mercier et al. [99] also incorporate aircraft changes by the crew as a measure of robustness

in their integrated aircraft routing and crew scheduling model. Tam et al. [134] describe and

evaluate a bi-criteria optimization approach to balance the planned crew costs and a single

robustness measure which penalizes crew connections with aircraft changes and small crew

sit times. Studies in this category usually emphasize aircraft changes and crew sit times but

do not focus much on crew recovery potential, crew rest times, duty flying times, or duty

elapsed times.

In summary, past research studies in airline crew scheduling have identified the various

features of airline crew schedules that affect the CPDD. However, no prior study has com-

bined these different features into a single optimization model. Additionally, while some

past studies, such as Yen and Birge [152], have attempted to incorporate the actual delay

costs into the crew pairing optimization models, these models have been highly simplified

due to computational tractability issues. Finally, and most importantly, all aforementioned

studies have focused, implicitly or explicitly, on finding an “optimal” crew schedule with

respect to a known optimization formulation. The problem that we solve in this chapter can

be thought of as the inverse of this problem. Given an actual crew pairing sample, our goal

is to reverse engineer the process used, and the problem solved, by the airlines to generate

the crew pairings that the airlines actually used. This will enable us to generate similar crew

pairings for other airlines, and/or other aircraft families, and/or other time periods than the

ones for which the crew pairing data sample is available. It is common knowledge that the
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major airlines typically use advanced optimization solvers to generate crew pairings. Fur-

thermore, in addition to minimizing planned costs, most airlines are known to directly or

indirectly attempt to reduce delay and disruption costs as well. However, the exact models

and algorithms used by a particular airline for crew pairing optimization are proprietary.

Therefore, in this chapter we reverse engineer airlines’ crew pairing generation process

with the objective of generating pairings that are similar to the actual airline-generated

crew pairings in terms of their CPDD potential.

The rest of this chapter is structured as follows. Section 2.2 describes our overall mod-

eling approach and problem formulation. Section 2.3 describes the solution approach, in-

cluding the exact algorithms and heuristic ideas developed by us to solve this challenging

problem. Section 2.4 describes our computational case studies in terms of data and prepro-

cessing, and presents evidence of the computational tractability of our approach. Section

2.5 describes the calibration and validation results obtained from our series of computa-

tional experiments. Section 2.6 further validates our results in terms of the CPDDs and

also describes how to use our results for estimating the CPDDs for any given network.

Finally, Section 2.7 discusses the main conclusions and the directions for future research.

2.2 Modeling Framework

Our objective is to generate crew itineraries that are similar to the real-world crew itineraries

as measured by the extent of the CPDD. Therefore, we first need to develop an appropriate

similarity metric for comparing two crew pairing solutions with each other, for any given

flight network. Defining similarity directly based on the actual costs of propagated delays

and disruptions is problematic for multiple reasons. Propagated delays and disruptions de-

pend on not only the crew schedules but also the underlying root (i.e., non-propagated)

delays and disruptions, as well as the operational recovery actions used by the airline.

Hence these are difficult to model accurately. Moreover, while planning the crew sched-
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ule, the airline itself is unaware of the exact set of root delays and disruptions that it will

face on a given day of operations. For these reasons, accurate calculation of the CPDD

costs is impossible. Instead, we measure the similarity between crew pairing solutions in

terms of their CPDD potential. As explained in Section 2.1.2, the CPDD potential is a

function of various features of a crew schedule. In Section 2.2.1, we classify these features

into four categories and select six representative features for inclusion in our model. Then

in Section 2.2.2, we provide the mathematical formulation for the crew pairing optimiza-

tion problem used as the basis of our calibration framework. Finally, in Section 2.2.3, we

give a mathematical formulation for our calibration problem of minimizing the distance

(i.e., maximizing the similarity) between the estimated and actual crew pairing solutions in

terms of their CPDD potential as quantified by these six features.

2.2.1 Representative Features

In the absence of sufficient schedule buffers and recovery opportunities, delays and dis-

ruptions propagate to downstream flights, leading to additional operating costs. Therefore,

besides the planned crew costs, airlines often consider some of these buffers and/or recov-

ery opportunities during crew scheduling to reduce these extra operational costs. There are

a variety of mechanisms through which delays and disruptions affect downstream flights.

When the sit time buffer (defined as the scheduled sit time minus the minimum required

sit time) or the rest time buffer (defined as the scheduled rest time minus the minimum

required rest time) between two consecutive flights is less than the arrival delay of the first

flight, delay propagates to the second flight unless some recovery action, such as a crew

swap, is able to prevent it. Thus, the sit time buffers, the rest time buffers, and the crew

recovery potential affect the crew-propagated delays and disruptions. However, if these

two flights are scheduled to be operated by the same aircraft, then this delay to the second

flight will be unavoidable because of aircraft based propagation, irrespective of whether

the crew is on time. Note that, as per the DOT classification, delay propagation in such
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situations is classified as aircraft based propagation, causing the CPDDs to be counted as

zero to avoid double counting. Thus, whether or not the crew travels with the same aircraft

affects the CPDDs. Finally, if flight delays result in violation of any of the crew duty regu-

lations and/or CBA rules, such as the total flying time in a duty or the total elapsed time in

a duty, then the later flight becomes inoperable by its scheduled crew, resulting in either a

flight cancellation or some crew recovery action. Thus, the available buffers (defined as the

maximum allowable value minus the scheduled value) in the total flying time or the total

elapsed time in a duty also affect the CPDDs. This discussion motivates our classification

of features affecting the CPDDs as well as our choice of the representative features.

We divide the features affecting the CPDD into four categories: Aircraft Change, Push-

Back, Crew Legality, and Crew Swaps. This categorization highlights the variety of ways

in which delays and disruptions can propagate through crew connections, and it facilitates

any future revisions or extensions of the feature-set based on the methodologies we have

developed.

• Aircraft Change

We first motivate this category with an example. Consider two flights, Flight 1 and

Flight 2, scheduled to be operated consecutively by the same crew within the same

duty. If Flight 1 and Flight 2 are scheduled to be operated by the same aircraft, then

irrespective of whether Flight 1’s is delayed or not, by the time the aircraft is ready

to operate Flight 2, the crew will typically be ready as well. Thus, there will be

either no delay propagation or there will be some delay propagation attributed to the

late arriving aircraft. However, no crew-propagated delay or disruption will occur.

On the other hand, if Flight 1 and Flight 2 are scheduled to be operated by different

aircraft, then to avoid delay propagation from Flight 1 to Flight 2, the crew on Flight

1 will need to exit that aircraft, reach the aircraft scheduled to operate Flight 2 and

get ready to start operating it before the scheduled departure time of Flight 2. In this

scenario, delay might propagate through the crew connection. Therefore, if the crew
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needs to change aircraft between consecutive flights within a duty, there is a potential

for the CPDD to occur. Hence whether or not the crew stays with the aircraft is an

important factor affecting the CPDD. Therefore the number of times a crew switches

aircraft within a duty is included as one of the representative features in our model.

• Push-Back

When a flight’s arrival is delayed, and the same crew within the same duty is sched-

uled to operate a subsequent flight, which is not scheduled to be operated by the

same aircraft, a simple policy is to delay the subsequent flight until its scheduled

crew is ready to operate it, regardless of how severe the delay is. We call this as the

push-back strategy [110]. Similarly, when the arrival of the last flight in a crew duty

(which is not the last duty in the crew pairing) is delayed, push-back strategy may be

used to delay the departure of the first flight in the crew’s next duty regardless of how

severe the delay is and irrespective of whether or not the same aircraft is scheduled

to operate the two flights. Note that, under the push-back strategy, delay propagates

through the crew connection when the buffer in the crew sit time or the crew rest

time exceeds the arrival delay of the first flight. Thus, the crew sit time buffer (be-

tween flights not scheduled to be operated by the same aircraft) and the crew rest

time buffer are important factors affecting the CPDD potential, and hence both are

used as representative features in our model.

• Crew Legality

When developing crew schedules, airlines must adhere to FAA crew safety regu-

lations and CBAs regarding the maximum flying time in a duty and the maximum

elapsed time in a duty. For example, if FAA regulations limit a pilot to a maximum

of 8 hours of flying time during a duty, and if the scheduled flying time is exactly

8 hours or just under 8 hours, then even a small delay to one of the earlier flights

could cause the actual flying time to exceed 8 hours. This would disallow the pilot
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to operate the last flight in the duty until the completion of a rest period, either lead-

ing to a flight schedule disruption such as cancellation or large delay, or triggering

a crew recovery action such as a crew swap or the use of reserve crews. Note that,

under this scenario, the CPDD occur even when the crew connection time buffer is

large and/or the crew is not scheduled to change aircraft between flights. A similar

argument holds when the scheduled elapsed time in a duty is equal to or just under

the maximum allowable duty elapsed time. Thus, the buffer in the flying time and

the elapsed time in a crew duty are important factors affecting the CPDD potential,

and hence both of these are used in our model as representative features.

• Crew Swaps

As mentioned in Section 2.1.2, crew schedule recovery actions include alternatives

such as delayed flight departures, crew swaps, reserve crews, flight cancellations, etc.

While delaying flight departures is the default alternative, under significant disrup-

tion events, it can result in very large and expensive delays. A flight cancellation

cannot be done in isolation; typically it leads to cancellation of one or more other

flights scheduled to be operated by the same aircraft and requires extensive amounts

of passenger rebooking. Use of reserve crews is constrained by their availability and

is typically an expensive strategy as well. A crew swap involves assigning a late ar-

riving crew to operate a flight with a later departure time than its originally scheduled

flight and instead using a different crew to operate the earlier flight. To allow a crew

swap, the two swapped pairings must be from the same crew base, must end on the

same day, and either crew must be qualified (in terms of equipment, route and airport

certifications) to operate the subsequent flights in both pairings [116].

Compared to other crew recovery actions such as cancellations or reserve crews,

swaps are typically less expensive, and therefore airlines find it beneficial to increase

the crew-swapping opportunities. Gao et al. [60] introduced the concept of crew base
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purity to restrict the number of crew bases serving each airport. They found that im-

proving the crew base purity can significantly increase crew-swapping opportunities

and thus reduce the cost of crew recovery. They describe the idea of using an ad-

jacency graph to quantify the extent of crew swapping potential. In an adjacency

graph, airports are represented by nodes and the existence of an arc implies that there

is at least one flight connecting the two nodes. For a specific airline’s network, dis-

tance between two airports in an adjacency graph is defined as the minimum number

of arcs that need to be traversed to go from one airport to the other. Crews serving

airports that are more distant from the crew base, lead to fewer crew swapping op-

portunities and thus lower recovery potential. In our model, the number of times a

crew visits an airport which is at a distance of 2 or more from its base is used as a

feature representative of the crew swapping potential and hence representative of the

CPDD potential. Other features indicating the crew recovery potential, such as, the

number of reserve crew members available at various airports, could also be poten-

tially included as representative features. However, we did not include them because

of the lack of data on the availability of reserve crews in our dataset.

2.2.2 Robust Crew Pairing Formulation

The six representative features identified in Section 2.2.1 were integrated into a mathe-

matical model that generates crew pairings that are similar to the real-world airline crew

pairings. Our model formulation is motivated by the work of Schaefer et al. [111], which

used a penalty method for quantifying and maximizing the robustness of a crew schedule.

They optimize the total expected operational cost of a crew pairing solution, which is de-

fined as the sum of the planned cost and a linear function of four attributes of each crew

pairing serving as proxy measures of its robustness. They assume that the aircraft are al-

ways available and hence no delay propagates through the aircraft connections. Also, the

recovery method is assumed to be push-back only. Finally, they assume that the opera-
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tional cost of a crew pairing solution is the sum of the operational costs of the individual

chosen pairings, and that interaction between crew pairings does not have an effect on the

operational costs. We retain this last assumption, but partially relax the first and second

assumption as follows. Similar to the four attributes chosen by Schaefer et al. [111], we

also include, in our representative features set, the scheduled sit time when crew changes

planes, the scheduled rest time between duties, flying time in a duty, and elapsed time in

a duty. Additionally, we also include as one of our representative features, the number of

times a crew changes aircraft between successive flights within a duty. This provides a par-

tial proxy for the additional delay that may result from the late arriving aircraft. Similarly,

we also include the crew base purity, as measured by the number of times the crew arrives

at an airport whose distance from the base is 2 or greater in the adjacency graph. We define

these as the instances of violation of the crew base purity. Crew base purity provides a

proxy for the crew recovery potential through crew swaps, as described in Section 2.2.1.

Thus, we used the following six features:

Feature 1: Scheduled sit time when the crew changes aircraft

Feature 2: Scheduled rest time between duties

Feature 3: Flying time in a duty

Feature 4: Elapsed time in a duty

Feature 5: Number of crew base purity violations

Feature 6: Number of aircraft changes by the crew within a duty

Our method of incorporating these features into the crew pairing optimization model is

an extension of the penalty method developed by Schaefer et al. [111]. For For any pairing

p, let cp be its planned cost, and fp be the penalty cost as a function of feature i. Then the
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total cost (cp) of pairing p (measured in the units of hours of crew flying) is defined as

c̄p = cp +
6∑
i=1

fp(i) (2.5)

For Features 3 and 4, as their scheduled value approaches the largest acceptable value,

the potential for the crew-propagated delays and disruptions (CPDD) increases. For in-

stance, the FAA requires that a crew must rest if it has already flown for 8 hours in a

duty. As the scheduled flying time in a duty increases, the chances of this pairing be-

coming illegal during operation increase because of increased likelihood of violation of

this rule. Similarly, for Features 1 and 2, as their scheduled value approaches the smallest

acceptable value, the CPDD potential increases. For Feature i, let δi denote the relevant

bound, that is, lower bound for Features 1 and 2 and upper bound for Features 3 and 4.

For example, for Feature 2, δ2 is the minimum rest time as allowed by the FAA regula-

tions and the CBAs. For δ2 of 10 hours, rest periods shorter than 10 hours in length are

not permitted. Let Count(i, p) be the number of times that Feature i occurs in pairing p,

and let V j
i,p be the value of the jth occurrence of Feature i in pairing p. For instance, if

pairing p has three duties with elapsed times of lengths 10, 12, 5 hours respectively, then

Count(4, p) = 3, V 2
4,P = 12, and V 3

4,P = 5. We use parameters αi to represent the maxi-

mum penalty, and βi to represent the slope in Feature i’s penalty function. So, for the first

four features, the function fp(i) is defined as

fp(i) =

Count(i,p)∑
j=1

max(αi − βi|V j
i,p − δi|, 0),∀i ∈ {1, 2, 3, 4}, (2.6)

The form of function fp(i) described by Equation (2.6) is similar to that used by Schae-

fer et al. [111]. It assumes that fp(i) is additive across the effects of all occurrences of

feature i in pairing p. Also, it assumes that, within a range, the effect of the value of the

feature in each occurrence is linear and increases as the value of the feature gets increas-

ingly closer to the relevant bound δi. At the bound, the effect has the maximum value αi,
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because this leaves zero buffer in case of any prior delays or disruptions, and hence creates

the maximum CPDD potential. Farthest away from the bound (i.e., at a distance of αi

βi
), the

the effect is zero. This is because large enough buffers almost fully eliminate any CPDD

potential.

For defining the penalty function for Feature 5, we observe that if most airports are

directly connected to the crew base, the airline has a greater potential for recovery by

finding a move-up crew. Also, as for Feature 6, we observe that if most crews stay with

the aircraft, then most of the delay propagation would be attributed to late arriving aircraft,

rather than being counted as part of the CPDD. So we penalize the number of occurrences

of crew changing aircraft and the number of occurrences of crew base purity violations. Let

parameters γi, i ∈ {5, 6} denote the penalty weights for Features 5 and 6. With Count(i, p)

defined the same way as that for Features 1 through 4, the function fp(i) for Features 5 and

6 is defined as

fp(i) = γi ∗ Count(i, p), ∀i ∈ {5, 6}, (2.7)

Note that this expression is simpler than that for Features 1 through 4 because the number

of aircraft changes and the number of crew base purity violations directly have an effect

on the CPDD potential, as against the effects of Features 1 through 4 which depend on the

difference between the feature value and the relevant bound. This results in a crew pairing

optimization model given by

Min
∑
p∈P

(cp +
6∑
i=1

fp(i))xp (2.8)

subject to:
∑
p∈P

(aipxp) = 1,∀i ∈ F, (2.9)

xp ∈ (0, 1),∀p ∈ P, (2.10)
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2.2.3 Calibration Framework

There are several ways of conceptualizing our calibration problem. Given the optimization

model (2.8) to (2.10), we could consider the calibration problem as one of estimating the

parameters αi, i ∈ {1, 2, 3, 4}, βi, i ∈ {1, 2, 3, 4} and γi, i ∈ {5, 6}. Thus it is an inverse

optimization problem. While an inverse linear optimization problem has been shown to be

another linear optimization problem [5], and hence is easy to solve, similar results do not

exist for an inverse integer optimization problem (IIOP). Recently, Lamperski and Schaefer

[84] developed an approach to formulate the IIOP as an integer optimization problem with

exponentially larger size. Others have proposed heuristic approaches for solving variants of

the IIOP (see Duan and Wang [50]; and Wang [143]; for recent examples). However, these

are computationally intensive and deal with only small-sized problems. A crew pairing op-

timization problem, on the other hand, typically consists of millions of (or more) variables,

and is typically solved using complex, resource-intensive algorithms such as branch-and-

price [17]. Therefore, solving an inverse version of such a problem is extremely challenging

for realistic problem sizes and no existing study has addressed this challenge successfully.

Alternatively, the calibration problem could also be considered a type of supervised

machine learning problem where the goal is to generate crew pairing solutions similar to

those in the labeled training data by learning the parameters αi, i ∈ {1, 2, 3, 4}, βi, i ∈

{1, 2, 3, 4} and γi, i ∈ {5, 6}. This labeled training data, represented by a set of crew

pairings, is in the form of a set of sequences of flights. This is in a non-standard structure for

supervised machine learning, and the mechanism through which the parameters affect the

labels is also very complicated. Thus, none of the typical supervised learning approaches,

such as support vector machines or neural networks, to name a few, are directly applicable.

This discussion suggests that our calibration problem has several unique attributes, and

is computationally much more expensive compared with what existing methods have been

shown to solve. Therefore, we propose a new mathematical framework and a solution

heuristic for solving this calibration problem. First, in this section we describe the frame-
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work and the relevant mathematical notation. Then, in Section 2.3, we describe the solution

heuristic.

Let us denote the set of parameters by PARAMS. Thus,

PARAMS = {α1, α2, α3, α4, β1, β2, β3, β4, γ5, γ6}. Let x̂(PARAMS) be the crew pair-

ing solution generated by solving the optimization model (2.7) to (2.10) for a given set of

PARAMS values, and let x be the real-world airline’s scheduled crew pairing solution in

our sample data. So, for each set of parameters, we have

x̂(PARAMS)) ∈ argmin
Xp∈{0,1},∀p∈P

{
∑
p∈P

(cp +
6∑
i=1

fp(i))xp :
∑
p∈P

(aipxp) = 1, i ∈ F} (2.11)

Also, let F X̂(i) =
∑

p∈P (fp(i)x̂p) and F X̂(i) =
∑

p∈P (fp(i)xp) be the values of the

i=ith components of the penalty functions corresponding to the crew pairing solutions x̂

and x respectively. Then the calibration problem is formulated as follows:

Minimize
6∑
i=1

|F x̂(i)− F x(i)| (2.12)

Subject to:

fp(i) =

Count(i,p)∑
j=1

max(αi − βi|V j
i,p − δi|, 0), ∀i ∈ 1, 2, 3, 4 (2.13)

fp(i) = γi ∗ Count(i, p), ∀i ∈ 5, 6 (2.14)

x̂ ∈ argmin
xp∈0,1 ∀p∈P

(
∑
p∈P

(cp +
6∑
i=1

fp(i))xp :
∑
p∈P

(aipxp) = 1, i ∈ F )

(2.15)

Note that this formulation minimizes the L1 norm of the difference between F x̂(i) and

F x(i). Alternatively, we could consider minimizing other norms (such as L2 norm) as well.

Our computational experiments with L1 and L2 norms showed that these two alternative

formulations did not lead to any significant changes in our results.
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2.3 Solution Approach

To generate crew pairings that are similar to those scheduled by the airline, we need to

solve the calibration optimization problem represented by (2.12)-(2.15). The similarity or

closeness between the two crew pairing solutions provides a measure of the success of

the calibration process. However, in order to truly assess the stability of this approach,

we need to perform out-of-sample testing. As described in Section 2.4, we use one set

of sample data to calibrate the parameters and then use the same calibrated values with

another set of sample data (from a different airline, and/or different aircraft family, and/or

different time period) to assess the stability of our approach. But before that, we need to

develop a heuristic to solve this very difficult problem represented by (2.12)-(2.15). Note

that the right hand side of constraint (2.15), in itself, is a very challenging problem for large

network sizes. It is a type of robust crew pairing optimization problem, and no prior study

in the literature has solved such problems of size as large as those of the networks used

in this chapter. Therefore, we develop and implement new heuristic approaches to solve

the inverse of this already very difficult problem. In this section, we describe the solution

approach. Then, in Section 2.4, we present our computational results.

We begin this section by describing, in Section 2.3.1, our overall heuristic for solving

the calibration problem. This involves repeatedly solving instances of the model (2.8) to

(2.10). Section 2.3.2 summarizes the solution approach for model (2.8) to (2.10), which

itself includes repeatedly solving instances of the LP (linear programming) relaxation of

this integer optimization problem. The solution to the LP relaxation of model (2.8) to

(2.10) involves repeatedly solving instances of a sub-problem called the pricing problem.

The process for solving this pricing problem is described in Section 2.3.3.
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2.3.1 Local Search Heuristic for the Calibration Problem

We use a local search method for solving the optimization problem given by (2.12)-(2.15).

It starts with all parameters in the set PARAMS initialized to 0. It then varies the param-

eters corresponding to each feature, one feature at a time, using a simple grid search to

identify any opportunities for improving the objective function (2.12). The algorithm ter-

minates when no better solution can be found in an iteration and returns the current best

solution. This detailed procedure can be found in the Appendix A.2. Note that these grid-

searches require us to examine various combinations of PARAMS values to calculate the∑6
i=1 |F x̂(i)− F x(i)| value. Examining each combination of PARAMS values requires

solving the robust crew pairing optimization problem given by (2.8) to (2.10). Next, we

discuss the process for solving this problem.

2.3.2 Crew-Pairing Solution Approach

Typically, the deterministic crew pairing optimization problem is solved by techniques such

as branch-and-price [17], which combine ideas from the branch-and-bound algorithm for

solving integer optimization problems with the delayed column generation ideas for solv-

ing large-scale linear optimization problems. The reader is referred to Kasirzadeh et al.

[78] or a detailed review of the state-of-the-art techniques in this area. Unlike previous

studies, our goal is not just to solve the robust crew pairing problem once. Instead, its solu-

tion constitutes a sub-problem within our overall calibration optimization process described

in Section 2.3.1. The overall calibration algorithm requires solving hundreds of these in-

dividual crew pairing optimization problems. Therefore, our computational performance

requirements are far more stringent than those of most prior studies in the literature. We

cannot afford to wait for several hours to solve the crew pairing optimization problem. In-

stead of using column generation at each node of the branch-and-bound tree, which is very

time consuming, we use a heuristic strategy to solve this problem. As explained in Section

2.4, this strategy helps us in obtaining solutions that are within a small optimality gap. This

30



strategy can be summarized as follows. It refers to two other algorithms, Algorithm A and

Algorithm B, which are described in Appendix A.1.

Heuristic Solution Strategy for the Robust Crew-Pairing Optimization Problem

Step 1: Form the Restricted Master Problem (RMP) by including only a small subset of

columns and relaxing the integrality constraints.

Step 2: Solve the RMP to find a set of dual variable values.

Step 3: Using the dual variables from Step 2, solve the pricing problem with Algorithm

B to identify if one or more variables have negative reduced costs. If so, add all

variables with negative reduced costs to RMP’s column pool and go back to Step

2; else go to Step 4.

Step 4: Using the dual variables from Step 2, solve the pricing problem with Algorithm

A to identify if one or more variables have negative reduced costs. If so, add all

variables with negative reduced costs to RMP’s column pool and go back to Step

2; else go to Step 5.

Step 5: Fix the largest fractional variable to 1 and check if an integer solution is obtained.

If not, go back to Step 2; else stop.

This algorithm was developed after experimenting with various alternative heuristic

ideas, and each step was chosen carefully based on the computational performance with

and without it. Our computational experiments revealed that Step 5 helps by improving

the computational performance substantially while increasing the optimality gap by very

little or nothing. Also, we found that decomposing the pricing problem’s solution process

into two steps, i.e., using Algorithm B in Step 3 and Algorithm A in Step 4, was a vital

part of the computational speedup that we achieved. Without this, we would not have been

able to finish all our experiments in reasonable amounts of time to accomplish this research

project. More details about this two-step approach are provided in Section 2.3.3.
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2.3.3 Solution to the Pricing Problem

Researchers have proposed and implemented a variety of methods for solving the pricing

problem. Multi-Label Shortest Path (MLSP) is a commonly used pricing algorithm in

the crew pairing context [48]. Unlike the deterministic version, our robust crew pairing

problem involves a more complicated objective function including the planned costs and

six types of penalty costs. Furthermore, as explained in Section 2.4, our network size is the

largest among all existing research studies addressing any variety of the robust crew pairing

problem. Therefore, we cannot directly use an existing method to solve the problem to near

optimality in a limited time. Therefore, we develop a new two-step approach to solve the

pricing problem to optimality. This approach is presented in Appendix A.1.

2.4 Case Study

In this section, we apply the models presented in Section 2 and the solution methods pre-

sented in Section 2.3 (and the Appendices) to four networks from two airlines across mul-

tiple time periods. We use confidential airline data containing crew scheduling samples

acquired from these two airlines to calibrate and validate our parameterized crew pairing

models. The data sources and data preprocessing steps are described in Section 2.4.1, while

the computational performance of our models is highlighted in Section 2.4.2. Section 2.5

presents the detailed calibration and validation results which demonstrate the accuracy and

stability of our approach.

2.4.1 Data Source and Data Preprocessing

We acquired crew schedule samples from one major regional carrier (RC) and one major

network legacy carrier (NLC) in the U.S. The RC has a homogenous fleet consisting of only

one fleet family and the data available to us spanned two full months, namely, March and

April 2014. The NLC’s operations consisted of several different fleet families. However,
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for our computational experiments we chose only the three largest networks, namely, those

operated by A320, B737 and B757 aircraft types, because the others were much smaller in

size. The NLC’s crew scheduling data sample spanned one full year, from August 2013 to

July 2014.

Aside from this confidential data, we also used the Airline On-Time Performance (AOTP)

database from the BTS website (Bureau of Transportation Statistics [28]) which contains

on-time arrival data for domestic flights by all major U.S. carriers. Most importantly for

our purposes, AOTP provides tail number for each flight, which is a key piece of infor-

mation useful to track aircraft rotations in real-world airline schedules. Since our data is

obtained from two separate sources, some data preprocessing steps, including data clean-

ing and merging, needed to be performed before using the data for model calibration and

validation. We refer the reader to the Appendix A.3 for the detailed preprocessing steps.

We obtained the true values of the planned crew cost parameters, such as δ, εandζ , as

well as the values of the lower limits on the crew sit times and the crew rest times, and

the upper limits on the maximum duty flying time and the maximum duty elapsed time

from both the airlines represented in our data samples. Finally, note that all our data is

related to the cockpit (and not the cabin) crew schedules, which are more stringent in their

regulations and hence are expected to be responsible for a majority of the crew-propagated

delays and disruptions. So our analysis is restricted to the cockpit crew schedules only, and

hence deals with a large part, but not all, of the crew-propagated delays and disruptions.

Note that this is a limitation of the available data and not of our methodology which would

be valid if we were to perform a similar analysis with the cabin crew scheduling data.

2.4.2 Computational Experiments

The CPLEX 12.5 solver with its default settings is used to solve all the linear and integer

optimization problems. An 8-thread / 4-core Intel i7-X5600CPU with 8GB RAM and Win-

dows 7 Professional as the operating system was used for all computational experiments.
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Table 2.1: Computational performance of our heuristic

Network Size (Flights) Pricing Approach Root LP Bound Our Integer Solution Gap Solution Time (hours)

102
Algorithm A Only 398.36 398.37 0.025% < 0.1

Algorithm B + Algorithm A 398.36 398.37 0.025% < 0.1

3300
Algorithm A Only 12760.43 12832.12 0.56% 2

Algorithm B + Algorithm A 12760.43 12832.12 0.56% 2

For demonstrating the computational performance of our crew pairing optimization ap-

proach, we consider two networks: one with 102 flights and the other with 3300 flights.

We first solve the root node LP relaxation to optimality to get a lower bound on the optimal

objective function value. This is listed in the third column of Table 2.1. Then using the

method described in Section 2.3.2, we obtain a feasible, but not necessarily optimal, solu-

tion of the integer optimization problem. Its objective function value is listed in the fourth

column. Fifth column gives the gap between the values in the third and fourth columns by

dividing the difference between the two by the value in the third column. Note that this gap

gives an upper bound on the true optimality gap of our heuristically obtained solution. The

last column gives the total runtime for obtaining the solution in the fourth column.

The second column lists the solution approach. We first list the performance of our

overall heuristic using the exact SPPRC method, (as described in Appendix A.1), i.e.,

without using Algorithm B. We also list the performance of our modified method, i.e.,

when using both Algorithm A and Algorithm B. Across all cases in Table 1, the gap was

at most 0.56%. For the small network, Algorithm B does not help in speeding up because

Algorithm A alone is sufficient to solve it within a few minutes. However, in case of the

large network with 3300 flights, the combined use of Algorithm A and Algorithm B, as

described in Section 2.3.2, significantly reduces the overall computational time from 10

hours to 2 hours. Similar improvements were observed in all our large network instances.

This demonstrates the value of using our modified two-step pricing approach.
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2.5 Calibration and Validation Results

2.5.1 Calibration Results

Table 2.2 lists the estimated parameters resulting from our calibration process as described

in Section 2.4.1, while Table 2.3 lists the penalty function values corresponding to each

feature.

Table 2.2: Parameter results

Feature Type Parameter RC NLC-A320 NLC-B737 NLC-B757

Type 1
α1 1 0.3 0.3 0.8
β1 1.5 0.65 1 3

Type 2
α2 0.5 0 0 1.5
β2 0.15 0 0 1.1

Type 3
α3 0.4 1.1 3 1
β3 1.4 0.4 1.25 1

Type 4
α4 2 1.65 2 3.8
β4 1.5 0.5 0.7 1.3

Type 5 γ5 0 0.025 0.08 0

Type 6 γ6 0.05 0.07 0.4 0

Table 2.3: Penalty function values

Cost Type Planned Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 %age

RC Airline Sample 4590.40 105.87 42.05 0 3.15 0 33.90 3.87%
Without Calibration 4143.38 293.72 46.94 4.08 93.60 0 43.34 10.41%

With Calibration 4244.99 91.23 40.66 0.41 8.44 0 34.80 3.97%

NLC-320 Airline Sample 4800.45 5.26 0 15.91 19.39 3.42 28.07 1.48%
Without Calibration 4515.51 13.05 0 62.24 148.29 5.30 37.45 5.57%

With Calibration 4539.24 5.27 0 9.48 12.53 3.38 28.00 1.28%

NLC-B737 Airline Sample 7448.00 0.77 0 53.74 32.75 9.44 182.4 3.61%
Without Calibration 6696.80 9.35 0 300.36 280.52 12.56 280.00 11.65%

With Calibration 6773.94 2.05 0 15.77 12.21 10.88 175.20 3.09%

NLC-B757 Airline Sample 976.18 0.44 1.08 0.47 3.52 0 0 0.56%
Without Calibration 925.08 0.41 2.17 2.28 22.25 0 0 2.85%

With Calibration 927.09 0 0 0.77 6.26 0 0 0.75%

Tables 2.2 and 2.3 present results using four distinct networks, namely, regional car-

rier’s complete network (RC) excluding the flights that were filtered out in pre-processing,

and the network legacy carrier’s networks using the A320 fleet family (NLC-A320), the
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B737 fleet family (NLC-B737), and the B757 fleet family (NLC-B757). The numbers of

flights in the RC, NLC-A320, NLC-B737 and NLC-B757 networks were 2432, 1200, 1840,

and 147, respectively. All experiments were conducted over a seven day time horizon and

the maximum number of duties allowed in a single crew pairing was four in all cases.

In addition to the penalty function values corresponding to each feature, Table 2.3 lists

the planned cost values for comparison purposes. In the last column, the total penalty cost

as a percentage of the planned cost is listed. For each network, there are three rows. All

three rows provide the components of the objective function evaluated using the calibrated

parameter values listed in Table 2.2. The first row uses the actual airline-provided crew

pairings. The second row uses the crew pairings obtained by solving the crew pairing

optimization problem by setting all parameters to 0. Finally, the third row uses the crew

pairings obtained by solving the crew pairing optimization problem by setting all parame-

ters to their calibrated values (listed in Table 2.2). Note that the calibration algorithm does

not explicitly attempt to match the planned cost values, because our aim is to match the

CPDD potential alone. Yet, for all four networks, the planned costs of the crew pairing

solution generated by our approach are found to be closer to the actual airline-provided

crew schedules with calibration than without calibration. Across networks and cost types,

the cost values with calibration were found to be closer (in most cases significantly closer),

than the cost values without calibration, to the airline-provided crew pairing solutions in

22 out of the 23 network-cost type combinations in Table 2.3. Note that we have excluded

the network-cost type combinations where all three values are zeros, which happens in 5

instances. In Section 2.5.2, we provide a metric for an easy comparison of this degree of

closeness in the form of a percentage error measure.

Tables 2.2 and 2.3 exhibit several differences between the four networks. Some of

these differences reflect the differences in the crew pay and crew legality rules. For the

NLC-B737 and NLC-A320 networks, crew pay does not depend on the time away from

base (i.e., parameter ζ in (1) equals 0). As a result, there is no tradeoff associated with the
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length of the rest period. For networks with nonzero ζ values, having shorter rest periods

can cause additional delay propagation while having longer rest periods can add to the

planned crew costs. Absent this tradeoff, for the NLC-A320 and NLC-B737 networks,

the optimization simply sets the rest period lengths such that the Type 2 penalty function

value is zero irrespective of the values of α2 and β2. For the RC network, we find that

irrespective of the values of the Type 5 parameters α5 and β5, Type 5 penalty function

value equals zero. Recall that Type 5 penalty function penalizes the number of crew-base

purity violations. Because of the simple hub-and-spoke structure of the RC network, most

crew travel from a hub to a spoke and back, and there isn’t much opportunity for changing

the Type 5 penalty cost by varying γ5. Therefore, for the RC network, γ5 value remains 0

even after calibration. Finally the NLC-B757 network is the smallest among the four, due

to which crews usually don’t have too many alternatives other than staying with the aircraft

and the crews do not end up going more than a distance of 1 unit away from the crew base

in the adjacency graph. This simplified structure of the network explains why both Type 5

and Type 6 parameters and the corresponding penalty function values are set to 0 for the

NLC-B757 network.

Although these four flight networks vary in size, and although the absolute CPDD level

cannot be directly compared across the four networks, the values in the last column of Table

2.3 range between 0.75% and 4% across all four networks, for the airline-provided crew

schedules and also for the solution generated by our calibrated model. These numbers

are much higher for the crew-schedules generated using the uncalibrated model. These

results demonstrate that our approach generates crew schedules whose balance between

planned and operational costs is similar to that of the actual crew-scheduling solution used

by the airlines. Previous studies involving robust crew pairing optimization, such as Yen

and Birge [152], have emphasized the importance of finding the right tradeoff between the

planned and operational costs. They test effects of different penalty parameters to control

this tradeoff, but do not provide explicit insights into the right tradeoff values. Our results,
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for the first time, allow us to get a measure of the perceived balance between the planned

costs and the penalty costs as reflected by the airlines’ actual crew scheduling practices.

Table 2.3 suggests that the right balance between the planned and penalty costs across the

four networks is in a relatively narrow range of 0.75% to 4% and is thus quite stable across

airlines and aircraft families.

Unlike previous studies, such as Schaefer et al. [111], Shebalov and Klabjan [116], Gao

et al. [60] which focus on minimizing a subset of the factors affecting the CPDD, we use

a more comprehensive approach by including a wider variety of factors. Unlike Yen and

Birge [152] who consider the total expected cost of future disruptions, our approach can

give a separate ratio between the penalty cost corresponding to each feature of the op-

erational cost and the planned cost. By allowing penalty costs of each component to be

assessed separately, we get a clearer understanding of the relative importance of each com-

ponent as perceived by the airlines.

Table 2.3 provides some preliminary evidence of the effectiveness and accuracy of our

calibration framework. However, there are several shortcomings of using the in-sample

penalty costs to assess the similarity of our solutions to the airline-provided crew sched-

ules. First, this in-sample comparison has an inherent bias because we are using the same

data samples to calibrate and to test the accuracy. We address this concern in Section

2.5.2 by presenting results of computational experiments where the parameter calibration

is performed using one dataset and then other datasets are used to assess the out-of-sample

accuracy of our approach. Second, we are measuring the closeness of the two solutions

using penalty functions, which themselves depend on the calibrated parameter values. To

make our comparisons more meaningful, we compare the distributions of the actual feature

values in Section 2.5.3. Finally, all methods used by us for evaluating the accuracy of our

approach depend on the features that we deem to be good proxies for the CPDD. While

many of these were chosen and are well-supported by previous research studies, they are

not likely to be precise measures of the CPDD. Therefore, a true test of the performance
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of our approach can only be conducted by comparing the actual CPDD. This concern is

addressed in Section 2.6.1.

2.5.2 Out-of-Sample Validation Results

This section demonstrates the accuracy and stability of our results through out-of-sample

validation. First, in Tables 2.4 through 2.7, we present the results where the calibration

and validation datasets belong to two different time periods for the same airline and for the

same fleet family. For the RC network, we choose March 2014 as the calibration set and

April 2014 as the validation set. For the three NLC networks, we select the first week of

one month from each quarter to represent flight schedules through a full year. Specifically,

we use January 2014 data for calibration and perform validation using datasets from April

2014, July 2014 and October 2013. Additionally, February 2014 dataset is also used to

perform validation for a scenario where the calibration and validation datasets are not too

far apart in time from each other. The intent of this validation is to test the validity of

using parameters calibrated using one time period to predict crew schedules for another

time period for the same airline and the same aircraft family. If the results are found to be

stable across time periods, then this allows us to use crew scheduling data samples from one

period to estimate crew schedules for other periods and thus reduces our data requirements

if we were to estimate the CPDD across long periods of time.

Let Ci, i ∈ {1, ..., 6} be the Type i penalty cost associated with the crew schedule

generated by our approach, and CAirline
i be the Type i penalty cost associated with the

corresponding airline-provided crew schedule. Then we define the Absolute Percentage

Error (APE) as |Ci−cAirline
i |∑N

i cAirline
i

, where N is the total number of components of the penalty cost

function, i.e., the total number of robustness features. Note that this is not a commonly

used method of error representation, but is chosen because it offers certain advantages for

our problem setting. First, the choice of denominator (
∑N

i c
Airline
i ) in the APE expression

guarantees that we do not have issues related to division by zero. Contrast this choice of
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denominator with a more standard CAirline
i term as the denominator, which would have

led to division-by-zero issues in many cases, such as the Type 3 error for RC network, as

presented in Table 2.3. Second, since we use the same denominator for all features, it is

easy and meaningful to compare the percentage errors across the different features.

Tables 2.4 through 2.7 list the APEs for each feature and also the average and maximum

values across features. The columns titled “Before” and “After” list the errors for crew

pairing solutions generated using uncalibrated and calibrated parameters respectively. Note

that as described in Section 2.5.1, in all cases the penalty function evaluation is performed

using the calibrated parameters. Looking at the results presented in Tables 2.4 through

2.7, several observations can be made. Errors are substantially lower in most cases after

calibration than before. The improvement is especially clear when looking at the average

or maximum values of the APEs across types. Average and maximum APEs are reduced

substantially by the calibration process and a reduction is observed across all calibration

and validation datasets. In many cases the reduction is by one or more orders of magnitudes.

The APEs are slightly lower in the out-of-sample validation datasets compared with the in-

sample calibration datasets, especially for the RC network. However, the out-of-sample

APEs are consistently reduced by the calibration process demonstrating the stability and

effectiveness of our approach. Moreover, seasonality is not found to play a significant role

in terms of the errors. The out-of-sample validation errors did not worsen and stayed stable

as the time between the calibration and validation datasets increased from 1 month (for

February) to 6 months (for July). The consistently lower error values with the calibrated

parameters, as measured individually, using averages, or using maximum values, indicate

that our approach produces crew pairings that are stable across time periods of up to several

months.

Tables 2.8 through 2.11 present the cross-validation results where the validation is per-

formed on a dataset which belongs to a different airline, a different fleet family, and in

some cases, a different time period compared with the calibration dataset. This constitutes
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Table 2.4: Cross-time period validation results: RC

Data Calibration (Mar) Validation (Apr)
Before After Before After

Type 1 101.6% 7.9% 58.9% 28.8%
Type 2 2.6% 0.8% 1.9% 0.3%
Type 3 2.2% 0.2% 1.6% 0.1%
Type 4 48.9% 2.9% 26.2% 0.2%
Type 5 0 0 0 0
Type 6 5.1% 0.5% 2.9% 0.4%
Average 26.7% 2.0% 15.3% 5.0%
Maximum 101.6% 7.9% 58.9% 28.8%

Table 2.5: Cross-time period validation results: NLC-A320

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct)
Before After Before After Before After Before After Before After

Type 1 10.8% 0.0% 12.0% 3.1% 9.3% 2.5% 11.3% 2.6% 21.1% 5.5%
Type 2 0 0 0% 0% 0 0 0% 0% 0% 0%
Type 3 64.3% 8.9% 59.8% 4.0% 39.2 % 12.9% 40.8% 8.6% 70.9% 11.5%
Type 4 178.9 9.5% 228.9% 8.2% 140.3% 31.0% 134.6% 23.1% 299.2% 0.3%
Type 5 2.6% 0.1% 1.9% 0.7% 3.0% 1.6% 3.2% 2.6% 4.4% 3.3%
Type 6 13.0% 0.1% 12.0% 1.5% 9.4% 1.9% 8.2% 3.7% 18.9% 5.5%
Average 44.9% 3.1% 52.4% 2.9% 33.5% 8.3% 33.0% 6.8% 69.1% 4.4%
Maximum 178.9% 9.5% 228.9% 8.18% 140.3% 31.0% 134.6% 23.1% 299.2% 11.5%

Table 2.6: Cross-time period validation results: NLC-B737

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct)
Before After Before After Before After Before After Before After

Type 1 3.1% 0.5% 3.9% 0.9% 2.0% 0.3% 2.6% 0.9% 3.1% 0.7%
Type 2 0 0 0% 0% 0 0 0% 0% 0% 0%
Type 3 88.4% 13.6% 76.3% 7.8% 48.9 % 13.4% 68.1% 12.8% 93.8% 6.9%
Type 4 88.8% 7.4% 86.9% 5.2% 60.7% 10.3% 70.9% 10.5% 100.2% 8.2%
Type 5 1.1% 0.5% 1.1% 1.0% 2.0% 0.6% 2.3% 0.7% 0.4% 1.1%
Type 6 35.0% 2.6% 30.2% 14.1% 26.3% 7.4% 28.0% 6.8% 35.3% 18.0%
Average 36.1% 3.1% 33.1% 4.8% 23.3% 5.3% 28.7% 5.3% 38.8% 5.8%
Maximum 88.8% 13.6% 86.9% 14.1% 60.7% 13.4% 70.9% 12.8% 100.2% 18.0%

Table 2.7: Cross-time period validation results: NLC-B757

Data Calibration (Jan) Validation (Feb) Validation (Apr) Validation (Jul) Validation (Oct)
Before After Before After Before After Before After Before After

Type 1 0.5% 8.0% 0.0% 2.9% 0.0% 0.0% 3.7% 0.8% 3.8% 3.8%
Type 2 19.8% 19.6% 0.0% 0.0% 161.6 % 0.0% 16.0% 0.8% 105.5% 10.2%
Type 3 32.8% 5.4% 14.1% 3.9% 54.7 % 0.0% 17.4% 19.8% 20.3% 9.6%
Type 4 339.9% 49.7% 185.1% 92.0% 1080.8% 25.1% 309.9% 79.1% 321.7% 39.4%
Type 5 0 0 0% 0% 0 0 0% 0% 0% 0%
Type 6 0 0 0% 0% 0 0 0% 0% 0% 0%
Average 65.5% 13.8% 33.2% 16.5% 216.2% 4.2% 57.8% 16.8% 75.2% 10.5%
Maximum 339.9% 49.7% 185.1% 92.0% 1080.8% 25.1% 209.9% 79.1% 321.7% 39.4%
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an important test of our calibration approach because realistically we cannot expect crew

scheduling samples to be available for all combinations of airlines, fleet types and time

periods. Instead, if we are able to access a small crew scheduling sample from one airline,

for one fleet family, and for one time period, it is desirable to use that sample to calibrate

parameters of a model that can then be used to generate crew schedules for other airline

types, other fleet types and/or other time periods. Tables 2.8 through 2.11 present these

cross-validation results where the four chosen combinations of networks and time periods

are RC March 2014, NLC-B737 January 2014, NLC-B757 January 2014, and NLC-A320

January 2014. In each table, we use the parameter sets obtained by calibration over the

networks listed in the top row.

Each table represents results of validation using a single network and time period com-

bination specified in the table caption. The intent of this validation is to test whether our

parameters calibrated for one combination of airline, fleet family and time period still per-

form well for other combinations of airlines, fleet families and time periods.

Table 2.8: Validation across airline, fleet family and time period for the RC network for
Mar 2014

Data RC (Calibration)) NLC-A320 NLC-B737 NLC-B757
Before After Before After Before After Before After

Type 1 101.6% 7.9% 21.4% 6.7% 6.1% 0.6% 43.2% 1.1%
Type 2 2.6% 0.8% 22.0% 16.5% 0 0 0.8% 7.5%
Type 3 2.2% 0.2% 28.8% 11.6% 31.1% 16.8% 18.5% 1.8%
Type 4 48.9% 2.9% 50.8% 21.1% 26.4% 7.4% 149.5% 51.2%
Type 5 0% 0% 0.3% 1.1% 0.4% 2.3% 0 0
Type 6 5.1% 0.5% 6.5% 1.4% 15.7% 7.7% 0 0
Average 26.7% 2.1% 21.6% 9.7% 13.3% 5.8% 35.3% 10.3
Maximum 101.6% 7.9% 50.8% 21.1% 31.1% 16.8% 149.5% 51.2

Tables 2.8 through 2.11 show that the average and maximum errors (APEs) after cali-

bration are much smaller when compared to those before calibration for all combinations

of the calibration and validation datasets. However, when compared with the calibration er-

rors, the validation errors are typically larger. This is especially obvious in Table 2.8 where

the calibration is performed using the RC network for March 2014 and the validation is
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Table 2.9: Validation across airline, fleet Family and time period for the NLC-A320 net-
work for Jan 2014

Data NLC-A320 (Calibration) RC NLC-B737 NLC-B757
Before After Before After Before After Before After

Type 1 10.8% 0.0% 36.9% 38.2% 2.4% 0.2% 34.1% 4.8%
Type 2 0 0 22.0% 16.5% 0 0 6.6% 6.3%
Type 3 64.3% 8.9% 1.1% 0.0% 52.6% 5.3% 29.7% 0.5%
Type 4 178.9% 9.5% 85.9% 4.0% 73.6% 3.0% 895.2% 52.4%
Type 5 2.6% 0.1% 0 0 2.9% 1.7% 0 0
Type 6 13.0% 0.1% 8.2% 0.6% 25.8% 16.6% 0 0
Average 44.9% 3.1% 25.7% 9.9% 26.2% 4.5% 160.9% 10.7
Maximum 178.9% 9.5% 85.9% 38.2% 73.6% 16.6% 895.2% 52.4

Table 2.10: Validation across airline, fleet family and time period for the NLC-B737 net-
work for Jan 2014

Data NLC-B757 (Calibration) RC NLC-A320 NLC-B757
Before After Before After Before After Before After

Type 1 3.1% 0.5% 60.2% 28.9% 17.1% 7.4% 27.6% 2.9%
Type 2 0 0 7.2% 22.6% 0 0 38.6% 0.3%
Type 3 88.4% 13.6% 2.6% 0.3% 120.1% 13.4% 37.0% 3.3%
Type 4 88.8% 7.4% 118.7% 0.2% 242.9% 20.6% 685.7% 80.6%
Type 5 1.1% 0.5% 0 0 3.5% 3.6% 0 0
Type 6 35.0% 2.6% 12.1% 5.8% 44.0% 33.8% 0 0
Average 36.1% 4.1% 33.5% 9.6% 71.3% 13.1% 131.5% 14.5
Maximum 88.8% 13.6% 118.7% 28.9% 242.9% 33.8% 685.7% 80.6

Table 2.11: Validation across airline, fleet family and time period for the NLC-B757 net-
work for Jan 2014

Data NLC-B737 (Calibration) RC NLC-A320 NLC-B737
Before After Before After Before After Before After

Type 1 0.5% 8.0% 21.4% 25.0% 2.5% 2.6% 0 0
Type 2 19.8% 19.6% 50.4% 19.6% 0 0 0 0
Type 3 32.8% 5.4% 3.1% 1.4% 69.4% 6.1% 70.4% 6.4%
Type 4 339.9% 49.7% 87.0% 33.5% 101.5% 16.5% 48.3% 0.1%
Type 5 0% 0% 0 0 2.3% 1.8% 3.2% 5.2%
Type 6 0 0 6.3% 0.9% 5.7% 2.5% 13.9% 4.0%
Average 65.5% 13.8% 28.0% 13.4% 30.2% 4.9% 22.6% 2.6%
Maximum 339.9% 49.7% 87.0% 33.5% 101.5% 16.5% 70.4% 6.4%

performed using the three NLC networks for January 2014. This seems to suggest that the

three NLC networks are more “simila” to each other in terms of their calibrated parameters

than the similarity between NLC and RC networks. This is not surprising given that the RC

network exhibits many differences in the network structure, schedules and flight durations

when compared with the three NLC networks. Moreover, Tables 2.9 and 2.10 together sug-
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gest that the parameters for the NLC-A320 and NLC-B737 networks are especially similar

to each other as reflected by their low cross-validation errors. This phenomenon can also

be explained by the fact that A320 and B737 aircraft families are similar to each other.

They are both single aisle, twin-engine aircraft with similar seating capacity and range

capabilities causing their flight networks to also look similar to each other.

Thus, Tables 2.8 through 2.11 provide several interesting insights. First, they demon-

strate that the out-of-sample validation errors are considerably lower using the calibrated

than the uncalibrated parameters even when the calibration was performed using a crew-

scheduling sample from a different airline type and/or fleet family. However, we also note

that the error reduction by using the calibrated rather than the uncalibrated parameters is

greater when the calibration and validation datasets are more similar, in terms of airline

type and fleet family. This suggests that, on one hand, when estimating crew schedules

for a given flight network, it is advisable to use a parameter set that has been calibrated

using a flight network that shares as many of its attributes as possible. On the other hand,

using any set of calibrated parameters is still likely to be considerably better than using

uncalibrated parameters. Even if the calibrated parameters are from a different time pe-

riod, different airline, and/or different fleet family, they improve the accuracy considerably

compared with the uncalibrated parameters, that is, compared with solving the determin-

istic crew-scheduling problem. Thus, while it is advisable and beneficial to have a wide

variety of airline crew schedule samples, our calibration approach enhances the degree of

similarity of the generated crew-pairing solution with the actual pairing solution used by

the airline even when crew sampling data are relatively scarce.

2.5.3 Validating Crew Pairing Distributions

In this section, we perform additional validation of our results by directly comparing the

distributions of the features that affect the crew-propagated delays and disruptions (CPDD)

for our results against the distributions of those features for the airline-provided crew pair-
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ing solutions. Note that, we do not expect our solution to result in precisely the same

crew pairings as those scheduled by the airline. Instead, our goal is to ensure that the

distributions of the features affecting the CPDD are similar between our solution and the

airline-provided solution so that the two crew pairing solutions possess similar CPDD po-

tential. This validation approach is similar in spirit to that used by Barnhart et al. [20] to

compare the distributions of features of passenger itinerary flows.

We consider the following distributions for validation purposes.

1. Distribution of the flying time in a duty.

2. Distribution of the elapsed time in a duty.

3. Distribution of the scheduled sit times.

4. Distribution of the scheduled rest times.

These correspond to Features 1 through 4 described in Section 2.2.1. The last two features

are not included in this type of validation to avoid redundancy. Features 5 and 6 are simply

the counts of occurrences of crew base purity violations and aircraft changes within a crew

duty, and hence are fully represented by the penalty function comparisons in Section 2.5.2.

The Chi-squire statistic and the Kolmogorov-Smirnov statistic are two commonly used

metrics for comparing two distributions to each other. The lower the values of these statis-

tics, the more similar are the two distributions. Table 2.12 compares the distributions of

these four features. For the RC network, the calibration is performed using the March 2014

dataset and the validation is performed using the April 2014 dataset while for the three

NLC networks, the calibration is performed using the January 2014 dataset and the vali-

dation is performed using the February 2014 dataset. Note that we do not present the rest

time distributions for the NLC-A320 and NLC-B737 networks for the reasons mentioned

in Section 2.5.1. These results in Table 2.12 further reinforce our conclusion that the cali-

brated models generate crew-pairing solutions that are very similar to those provided by the
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airline in terms of the distributions of the CPDD potential, when tested on both in-sample

and out-of-sample datasets. In almost all cases, the calibrated parameters yield a better

fit to real-world distributions compared with the uncalibrated ones and in many cases the

improvement is large.

Table 2.12: Validating distributions of crew pairing solution features

Dataset Feature Chi-Square Kolmogorov-Smirnov
Before After Before After

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

RC, Calibration (March 2014)

Flying Time 48.86 0 0.15 0.9852 0.67 0.03 0.33 >0.2
Elapsed Time 94.19 0 36.22 0 0.40 >0.2 0.20 >0.2

Sit Time 89.67 0 106.84 0 0.50 0.18 0.50 0.18
Rest Time 6.95 0.0735 1.27 0.7363 0.33 >0.2 0.33 >0.2

RC, Validation (April 2014)

Flying Time 40.55 0 7.26 0.0641 0.67 0.03 0.33 >0.2
Elapsed Time 83.15 0 3.58 0.3105 0.40 >0.2 0.20 >0.2

Sit Time 157.16 0 7.64 0.89 0.75 <0.01 0.50 0.12
Rest Time 6.63 0.0847 17.74 0.0005 0.33 >0.2 0.33 >0.2

NLC-A320, Calibration (January 2014)

Flying Time 73.47 0 1.25 0.741 0.75 <0.01 0.25 >0.2
Elapsed Time 171.22 0 1.32 0.7244 0.75 <0.01 0.25 >0.2

Sit Time 42.13 0 13.3 0.0099 0.40 >0.2 0.20 >0.2

NLC-A320, Validation (February 2014)

Flying Time 60.36 0 8.95 0.03 0.75 <0.01 0.25 >0.2
Elapsed Time 160.34 0 10.75 0.0132 0.50 0.17 0.25 >0.2

Sit Time 55.16 0 31.90 0 0.40 >0.2 0.20 >0.2

NLC-B737, Calibration (January 2014)

Flying Time 281.96 0 49.77 0 0.67 0.03 0.33 >0.2
Elapsed Time 284.30 0 21.63 0.0001 0.60 0.07 0.40 >0.2

Sit Time 81.07 0 27.98 0 0.75 <0.01 0.50 0.12

NLC-B737, Validation (February 2014)

Flying Time 113.51 0 20.09 0.0002 0.50 0.17 0.17 >0.2
Elapsed Time 262.42 0 11.15 0.0109 0.60 0.07 0.20 >0.2

Sit Time 54.66 0 33.15 0 0.25 >0.2 0.25 >0.2

NLC-B757, Calibration (January 2014)

Flying Time 3.45 0.3273 0 1 0.25 >0.2 0 >0.2
Elapsed Time 4.85 0.1831 3.40 0.334 0.40 >0.2 0.20 >0.2

Sit Time 3.67 0.4525 0.37 0.9849 0.50 0.12 0.25 >0.2
Rest Time 3.92 0.2702 9.23 0.0264 0.33 >0.2 0.33 >0.2

NLC-B757, Validation (February 2014)

Flying Time 2.38 0.4974 2.31 0.5106 0.25 >0.2 0.25 >0.2
Elapsed Time 3.32 0.3449 2.23 0.5261 0.20 >0.2 0.20 >0.2

Sit Time 0.22 0.9944 2.25 0.6899 0.25 >0.2 0.25 >0.2
Rest Time 7.10 0.0688 2.98 0.3947 0.33 >0.2 0.33 >0.2

2.6 Estimation and Validation of the Crew-Propagated De-

lays and Disruptions

All calibration and validation results presented in Section 2.5 were based on comparisons

of the crew pairing solutions in terms of the values of the penalty function components

and distributions of the features that are representative of the crew-propagated delays and

disruptions (CPDD). In this section, we focus directly on the CPDD. In Section 2.6.1, we
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provide additional validation of our results in terms of the CPDD. Then, in Section 2.6.2

we present the process for estimating the CPDD for any given airline, fleet family and time

period, thus highlighting how the crew pairing solutions generated by our research can be

used to estimate the CPDD for any given network.

2.6.1 Validation Based on the Crew-Propagated Delays and Disrup-

tions

As argued in Section 2.2, the crew-propagated delays and disruptions (CPDD) depend not

only on the crew schedules but also on the root delays and on the operational recovery

actions used by the airline. As researchers, typically we are not aware of the exact set of

recovery strategies and parameters that were used by the airlines because such information

often tends to be confidential. Moreover, neither the researchers nor the airlines are aware

of the exact levels of future root delays when planning the crew schedules for those future

time periods. These limitations make it difficult to accurately calculate and compare the

CPDD values. In this section, we use an existing crew-recovery software tool, named

SimAir, for simulating airline operational recovery and for estimating the CPDD. For a

detailed description of SimAir, the reader is referred to Rosenberger et al. [110]. Some

past studies in robust crew scheduling, such as Schaefer et al. [111], have used SimAir to

evaluate the operational performance of the crew schedules.

While SimAir is one of the most sophisticated existing tools available to researchers

for simulating airline operations, its recovery approach does not include crew swaps. Thus,

we expect SimAir to overestimate the total operational costs to some extent. Moreover,

SimAir requires distributions of various components of root delays as inputs, but they are

not easy to ascertain accurately. SimAir divides each flight into a variety of phases such

as gate departure, taxi-out, take-off, en-route, touch-down, and taxi-in, and models delays

in each phase in detail using separate delay probability distributions. For a given flight,

estimating these delay distributions empirically requires making several assumptions and
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analyzing a lot of historical delay data. As such, this is beyond the scope of our current

validation process. Therefore, in order to provide an example of how to validate our crew

pairing solutions based on the CPDD, we make assumptions about the delays in different

flight phases. For the sake of simplicity, we divide all flights into two categories, namely

long-haul and short-haul, and assume the delay distributions to be the same for all flights

within a category. To keep the presentation simple, in this section we will focus only on the

NLC-B757 network, which is the smallest across the four case study networks described in

Section 2.4.

Table 2.13 provides a summary of the root delay distributions for all individual flight

phases that we used as inputs to SimAir. If the scheduled block time is greater than 2

hours, then we categorize the flight as a long-haul flight, and otherwise we categorize it

as a short-haul flight. The actual flying time equals the scheduled block time of the flight

minus a random variable with positive expected value. Therefore, the mean of the Gaussian

distributed random variable used for modeling the flying time delay is negative, as indicated

in the last two rows of Table 2.13. Values detailed in Table 2.13 are the same as those

suggested as default values in the SimAir User’s Manual.

Table 2.13: Summary of the SimAir delay distributions

Event Distribution Mean (Standard Deviation) Unit

Departure Gate Delay Gaussian Distribution 1 (3) Minutes
Take-off Service Rate Gaussian Distribution 20 (2) Take offs per hour
Touch-Down Service Rate Gaussian Distribution 20 (2) Touch downs per hour
Taxi-Out Duration Constant 5 Minutes
Taxi-In Duration Constant 5 Minutes
Flying Time Delay (Long-Haul) Gaussian Distribution -20 (5.948) Minutes
Flying Time Delay (Short-Haul) Gaussian Distribution -20 (5.665) Minutes

Using SimAir, we test three crew pairing solutions for the NLC-B757 network, namely,

the one actually used by the airline, the one generated by solving the deterministic crew

pairing optimization problem (i.e., by setting all parameters to 0), and the one generated

by our approach using the calibrated parameters. For each of these three crew pairing so-

lutions, we conduct 2000 simulation runs. We test the stability of our simulation results by
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calculating the 95% confidence interval for 15-minute flight on-time performance for the

three crew pairing solutions. They are found to be [88.14%, 88.44%], [86.13%, 86.43%],

and [87.73%, 88.05%], respectively, for the airline sample, the pre-calibration crew pairing

solution, and the post-calibration crew pairing solution. These narrow intervals not only

demonstrate the stability of our results but also show that the on-time performance for the

airline’s actual crew pairing solution is much closer to that obtained by our approach after

calibration than before calibration. Table 2.14 provides full details of SimAir result com-

parisons across the three crew pairing solutions. First row of Table 2.14 lists the number

of simulation runs while the remaining nine rows list various simulation result summary

statistics. Interestingly, we find that the airline sample simulation results are closer to the

results after calibration than the results before calibration in terms of each of these nine cri-

teria, and in many cases the similarity improvement due to calibration is substantial. This

further validates the effectiveness of our approach.

Table 2.14: SimAir-based validation results

Airline Sample Before Calibration After Calibration

Number of Simulation Runs 2000 2000 2000
15-Minute On-time Performance 88.29% 86.28% 87.89%
Number of Reserve Crew Calls 0 1.99 0.05
Number of Crew Deadheads 0 0.98 0.05
Flight Legs Ferried 3.02% 3.46% 2.95%
Flights Delayed ≤ 0 min 29.41% 28.49% 29.23%
Flights Delayed (0, 15] min 58.88% 57.79% 58.66%
Flights Delayed (15, 45] min 3.47% 3.37% 3.52%
Flights Delayed > 45 min 3.47% 3.37% 3.52%
Canceled Flights 7.28% 9.58% 7.76%

2.6.2 Estimating the Crew-Propagated Delays and Disruptions

In this chapter, we developed an approach to generate crew pairing solutions that are similar

to the actual crew pairing solutions used by the airlines in the real world, in terms of their

potential for the crew-propagated delays and disruptions (CPDD). As mentioned in Section

2.1, this work has at least three main types of applications. First, it is the first step toward
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estimating the extent to which delays and disruptions propagate through crew connections.

Second, it allows us to assess and compare the effectiveness of various operational recovery

strategies used by the airlines. Finally, it allows us to evaluate and compare the full impact

of various candidate strategies for congestion and delay mitigation that are being considered

by the airlines, airports, air traffic control system, and the government. In this section, we

briefly describe how each of these objectives can be achieved using our results.

Table 2.2 provides four different sets of parameters representing four different airline

networks. The robust crew pairing optimization model (2.8)-(2.10) can be solved for each

of these four sets of parameters to come up with an estimated crew schedule for any given

airline network of interest. As our results in Section 2.5 indicate, when picking the right set

of parameters, it is advisable to choose a set that corresponds to a network which is the most

similar (in terms of the airline type, fleet type and time period) to the network of interest.

However, no matter which parameter set is picked, using calibrated parameters gives a

far better fit than solving the deterministic crew pairing model in all cases. Alternatively,

the calibration approach described in Sections 2.3 and 2.4 could be used to generate more

suitable parameters in case a better-matching airline crew schedule sample is available.

Once the crew schedules are estimated, they can be used to estimate the CPDD. Note

that, for accurately estimating delays in a historical dataset, some knowledge or assump-

tion regarding the recovery strategies used by the airlines is necessary. For a given set of

root delays and for a given operational recovery strategy, our crew schedules can be used

to estimate the historical CPDD values in a relatively straightforward manner. On the other

hand, for evaluating and comparing different operational recovery strategies and different

congestion mitigation strategies, a root delay simulator such as SimAir can be used in com-

bination with our estimated crew schedules to calculate the full extent of delay reduction

achievable by these strategies. Note that, in all cases, total propagated delays and disrup-

tions should be measured by accounting for the propagation through aircraft connections

as well as crew connections. However, the aircraft connections are publicly available and
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hence are not a bottleneck in this overall process.

2.7 Summary

In this chapter, for the first time, the inverse of the robust crew-pairing-generation problem

was presented, formulated, and solved to gain insights into the extent of the robustness of

real-world airline crew-scheduling practices. The problem was formulated as one of learn-

ing the parameters of the robust optimization objective function using real-world airline

crew-scheduling samples. A heuristic solution approach was developed and implemented.

It involved solving the forward problem (the robust crew-pairing problem) repeatedly to

minimize a similarity measure between the solution of the robust crew-pairing problem

and the actual airline crew schedule samples by identifying the optimal set of objective

function parameters. The forward problem minimizes the sum of the planned cost and the

penalty costs, which penalize the crew pairings for six different features that make them

vulnerable to the propagation of delays and disruptions. A sequence of exact methods and

heuristic ideas was used to solve this robust crew-pairing problem to near optimality. This

allowed the overall parameter calibration problem to be solved in a reasonable amount of

time.

Several new insights into the airline crew-pairing generation process were obtained.

First, compared with the crew pairings obtained by solving the deterministic crew-pairing

problem, the calibrated parameters led to crew pairings that are considerably closer to the

actual airline crew schedules in all our experiments. In most cases, the accuracy improve-

ment was substantial. This suggests that airlines do take into account robustness or the

potential for propagation of delays and disruptions when creating their crew schedules. Fur-

thermore, we found that the crew pairings calibrated using four different airline networks

performed similarly to each other, and much better than the deterministic crew-pairing so-

lutions, in terms of their closeness to the actual crew schedules, even when the calibration
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and evaluation were not conducted on the same network. This suggests that the calibrated

parameters are relatively stable. Thus, even in cases where the data available for model

training are for a network somewhat dissimilar to the one of interest, it is better to use

the calibrated parameters than the uncalibrated ones. However, for maximizing estimation

accuracy, whenever possible, it advisable to use parameters calibrated with a network that

is as similar to the one of interest as possible, in terms of airline type, fleet type, and time

period. Finally, this chapter presented, for the first time in the literature, a measure of the

trade-off as perceived by the airlines between the crew salary costs and the costs of the

crew-propagated delays and disruptions as reflected by the calibrated robust crew pairing

objective functions. Across the four networks, the ratio of the penalty costs (representing

the costs of the CPDDs) and the crew salary costs was found to lie between 0.5% and 4%.

Note that this is inferred based on the crew pairings used by the airlines and not based on

the actual costs of these delays and disruptions.

In addition to these insights, as described in Subsection 2.6.2, this research makes the

estimated crew pairing solutions available for further research and analysis. We have made

this entire model calibration code as well as the resulting calibrated crew-pairing solutions

publicly available for future research. These estimated crew-pairing solutions are useful

to gauge the extent of delays and disruptions that propagate across the airline networks

through crew connections. While these crew-pairing estimates do give a starting point

to estimate the CPDDs, the important next step toward accurately estimating historical

delay propagation is to develop an understanding of the crew recovery strategies used by

the airlines in the real world. Once we have access to a historical sample of actual crew

recovery actions, a framework similar to the one developed in this chapter could be used to

learn the airline crew recovery optimization process as well. This will be the next step in

our research project.
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Chapter 3

Airline Timetable Development and

Fleet Assignment Incorporating

Passenger Choice

3.1 Introduction

Airline profitability is affected by a variety of complex factors, some of which are under an

airline’s control, including the set of Origin-Destination (O-D) markets being served, the

frequency of the flights offered on each segment, the times at which these flights are sched-

uled, and the fares which are offered. Maintaining consistent profitability levels requires

coordination across an airline’s departments including network planning, marketing, pric-

ing, revenue management and operations. Airlines have traditionally been at the forefront

of innovation in data-driven decision-making and developing automated decision-support

tools. Many of the world’s leading airlines have been using large-scale optimization mod-

els for decades. Yet, completely automated decision-making has been a rarity for some of

the most critical decision-making steps taken by airlines across the world. In fact, some of

the most critical decisions are still handled on an ad hoc basis with no or limited support
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from data-driven tools. This may result in missed revenue opportunities and imbalances

between the passengers’ preferences and the offered traveling options. Timetable develop-

ment is one such critical decision-making step for which analytical optimization methods

remain limited.

The airline planning process consists of a variety of decision-making steps including

schedule design, fleet assignment, aircraft routing and crew scheduling, which are typically

carried out sequentially. Schedule design itself contains two sub-steps: frequency planning

and timetable development (or timetabling for short). Frequency planning involves the

choice of the number of flights operated daily on each nonstop segment in the airline’s

network. Timetabling involves determining the scheduled departure and arrival times for

each of these flights. The next step, fleet assignment, determines the fleet type to be used

for each flight, with the objective of matching the number of available seats with passenger

demand. While larger aircraft may lead to higher operating costs, smaller aircraft may re-

sult in revenue losses because some passengers may get “spilled” if the number of available

seats is smaller than passenger demand. Next, aircraft routing involves generating feasible

routes for each individual aircraft while ensuring that maintenance requirements are satis-

fied. Last, crew scheduling includes crew pairing, i.e., combining flights into sequences

starting and ending at a crew base, and crew rostering, i.e., creating monthly schedules

from these flight sequences and assigning them to individual crew members. All these de-

cisions, taken together, determine the airline’s service offerings and daily operations, and

can therefore have a considerable impact on its profitability. While some of them (e.g., fleet

assignment) have been the subject of considerable research, others (e.g., timetabling) lack

systematic decision-making tools.

Airline timetabling decisions are significantly complicated by the endogeneity of fleet

assignment decisions and passenger booking decisions. From a passenger’s perspective,

important determinants of the attractiveness of each itinerary include the departure and ar-

rival times of the flights in that itinerary, as well as connection times in case of a connecting
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itinerary, all of which are defined by flight timetables. For example, itineraries departing

during early mornings and late afternoons are typically more attractive than other itineraries

to many passengers. Additionally, flight timetables that generate more passenger connec-

tion opportunities lead to more flying options for passengers. These are especially useful in

low-demand markets which do not support nonstop flights. An obvious goal of timetabling

is to schedule flights at times that are most attractive to passengers (also known as peak

times). However, a naive implementation of such strategy could violate constraints related

to fleet availability and aircraft operations. Also, as mentioned earlier, different fleet types

vary in seating capacity and can lead to considerable variations in profit even for the same

timetable. In summary, in order to generate feasible and profitable timetables, it is essential

to integrate fleet assignment decisions and the dynamics of passengers’ booking decisions

across alternative itineraries into the airlines’ timetabling decision-making process.

Most existing research in airline timetabling considers only incremental changes to ex-

isting timetables. The commonly used approaches start with a feasible timetable (e.g., from

historical operations), and aim to find marginal improvements by retiming of some flight

legs and/or using a combination of mandatory and optional flight legs. There is very little

research on comprehensive (as against incremental) timetabling methods where an opti-

mal timetable is developed from scratch rather than relying on modifications to an existing

timetable. This is, in part, due to the mathematical and computational challenges asso-

ciated with developing and solving integrated timetabling and fleet assignment models.

Mathematically, this requires the integration of highly nonlinear and non-convex passen-

ger choice models into the large-scale mixed-integer optimization frameworks necessary to

solve timetabling and fleet assignment problems faced by major airlines. Computationally,

this requires new algorithms for solving the resulting optimization models within reason-

able time horizons to demonstrate the benefits of the comprehensive timetabling approach

over incremental approaches that already exist in the literature and in practice. The purpose

of the research presented in this chapter is to address these two interrelated challenges.
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This chapter introduces an original integrated optimization approach to comprehensive

timetabling and fleet assignment under endogenous passenger choice. While our modeling

approach can capture a variety of discrete-choice models of passengers’ booking decisions,

we use here the Generalized Attraction Model (GAM) recently proposed by Gallego et al.

[59]. This encompasses, as special cases, many well-known discrete-choice models, such

as the multinomial logit model (MNL). We use a linearization technique to integrate the

GAM into our optimization model of flight timetabling and fleet assignment while retaining

a mixed-integer linear programming structure.

The resulting model, despite being a mixed-integer linear (rather than nonlinear) op-

timization model, is still highly intractable by commercial solvers due to its extremely

large size. We thus develop an original multi-phase solution approach, along with several

heuristics, to optimize the network-wide timetable of a major airline carrier within a real-

istic computational budget. From a practical standpoint, our modeling and computational

framework provides decision support for airlines interested in generating new timetables,

evaluating or enhancing their existing timetables, or analyzing various business strategies

such as considerations of mergers and acquisitions. Furthermore, we demonstrate the value

of integrating timetabling decisions with other planning steps, such as frequency planning

and revenue management, to improve the airline’s overall profitability.

Note that this is a particularly exciting time in the airline industry to develop a tractable

approach to comprehensive timetabling optimization. In particular, we are aware that at

least one of the world’s ten largest airline carriers is working closely with a prominent air-

line optimization software vendor to develop their timetables from scratch. Our discussions

with that vendor and multiple large airline carriers have indicated a strong interest in this

topic, and have suggested that solution tractability remains the primary challenge in such

endeavors. Nevertheless, we are not aware of any study in the existing scientific literature

that addresses this challenge explicitly.
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3.1.1 Literature Review

In this subsection, we first provide an overview of the fleet assignment model (FAM). We

then discuss existing studies that integrate passenger flows and incremental timetabling

decisions into the FAM, and limitations thereof. We conclude with a brief review of the

recently studied discrete-choice models of passengers’ booking decisions that we will in-

tegrate into our optimization model.

The airline fleet assignment problem has been a canonical problem in transportation

science since the early work of Abara [1] and Hane et al. [67]. The initial model formula-

tions and computational solutions reported in these studies showed the potential for signif-

icant profit improvements through the use of optimization models and automated decision

support to match aircraft fleet types with passenger demand under a variety of operating

constraints. These two studies used a flight leg-based passenger demand assumption. This

was then improved by integrating an itinerary-based demand model to capture the effects

of hub-and-spoke network operations on optimal fleet assignment decisions [18, 19]. Com-

putationally, FAM involves large-scale optimization problems and, thus faces considerable

challenges in solving them to optimality (or near optimality) in reasonable time frames.

These challenges are particularly severe under the itinerary-based demand assumption,

which increases the model requirements significantly as compared to the flight leg-based

demand assumption. Therefore, extensive FAM research has also focused on developing

efficient solution approaches based on various techniques, including Benders decomposi-

tion (e.g., Jacobs et al. [73]) or very large-scale neighborhood search (e.g., Ahuja et al.

[6]).

One of the main challenges in FAM involves capturing the endogeneity of passenger

choice, i.e., the impact of airline fleeting decisions on passenger flows across the network

of flights Barnhart and Vaze [16]. Two important considerations when modeling such en-

dogeneity are spill (i.e., the revenue lost if the assigned fleet type is unable to satisfy pas-

senger demand) and recapture (i.e., the part of the spilled revenue that is re-captured by
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redirecting passengers to other flights of the same airline). These were first addressed by

Kniker [81] and Barnhart et al. [18], who combined a Passenger Mix Model (PMM) into

the FAM to approximate spill revenue in an itinerary-based modeling framework. PMM

was formulated as a large-scale network flow problem and solved using column and row

generation techniques. Subsequent work extended these ideas to optimize fleet assignment

adjustments in response to improved demand forecasts that become available closer to the

day of departure, known as demand-driven re-fleeting [118]. This was integrated into the

FAM by Sherali and Zhu [117] in a two-stage setting where the first stage only performs

assignment decisions at a higher “fleet family” level, while the second stage adjusts them

in response to demand realizations.

Thus, important advances have been made toward capturing passengers’ booking de-

cisions and resulting passenger flows into airlines’ fleet assignment decisions. However,

none of the aforementioned studies considers flight timetabling explicitly. Before proceed-

ing further, we note that airline timetabling decisions, airline fleet assignment decisions

and passenger booking decisions are closely interrelated. For example, consider a nonstop

segment between Airport A and Airport B with a block time (defined as the difference

between the departure time and arrival time) of 2 hours, with two timetabling alternatives:

i. Two flights per day from A to B: 9 am – 11 am (i.e., departure at 9 am and arrival at

11 am) and 3 pm – 5 pm; and two flights per day from B to A: 12 pm – 2 pm and 6 pm

– 8 pm.

ii. Two flights per day from A to B: 9 am – 11 am and 6 pm – 8 pm; and two flights per

day from B to A: 9 am – 11 am and 6 pm – 8 pm.

Although the two alternatives have the same number of flights per day, they might lead

to very different passenger flows, revenues and operating costs in the FAM. For instance,

Alternative (ii) might generate higher demand due to the alignment of its flight offerings

with peak morning and evening hours. On the other hand, Alternative (i) can be operated
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with a single aircraft (assuming a minimum aircraft turnaround time of 1 hour or less),

which might lead to lower network-wide costs. Moreover, the profit contribution of these

two alternatives also depends on the fleet assignment decisions; for example, Alternative

(ii) might not yield much higher revenue than Alternative (i) if the available number of seats

on each flight is small. Therefore, any timetabling optimization model needs to integrate

fleet assignment decisions and passenger booking decisions into it.

Given the considerable computational requirements of solving the FAM alone, aug-

menting it to integrate with timetabling decisions and passenger booking decisions results

in extremely complex optimization models. For this reason, researchers have mostly fo-

cused on incremental timetabling approaches, often by only allowing small deviations from

an existing schedule. For example, Lohatepanont and Barnhart [89] consider sets of manda-

tory and optional flight legs, along with spill and recapture models. The only timetabling

flexibility in this model is the possibility of eliminating a subset of the optional flight legs.

This approach has been improved by considering stochastic passenger demands [151] and

by involving aircraft and passenger delay costs [107]. Other studies have added other de-

cisions into this framework, such as flight block times [76], the re-timing of flight legs

under congestion [126], aircraft routing [121], frequency planning and multi-modal com-

petition [32], etc. Most recently, Abdelghany et al. [2] developed a timetabling model for

revenue maximization that considers passenger demand shifts among airline competitors.

This was formulated using an incremental approach that allowed each flight’s departure

time to be optimized within a specific time window. Moreover, this formulation included

a non-convex objective function, which makes the model impractical to solve in most real-

world instances. More closely related to our approach, Wang et al. [142] incorporated

passenger choice into a mixed-integer linear program for fleet assignment, where passen-

ger spill and recapture are based on the “attractiveness” of itineraries. They also suggested

the possibility of extending their formulation to capture incremental timetabling decisions.

This contrasts with our goal of addressing the comprehensive timetabling problem. More-
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over, their computational results suggest that the consideration of passenger choice makes

the resulting model extremely hard to solve as compared to the traditional itinerary-based

FAM. No results were reported for even the incremental flight timetabling problem.

Turning to the passengers’ booking decisions, a separate recent stream of literature has

focused on passenger choice modeling in the airline industry [61, 74]. The most commonly

used model is the multinomial logit model (MNL), which assumes that each passenger’s

itinerary choice depends on the utilities derived from that itinerary and from all the al-

ternative itineraries in a given choice set. More advanced approaches such as the mixed

multinomial logit model [95] and the generalized extreme value model [25] have been pro-

posed to capture passenger behaviors more accurately. Empirically, Coldren et al. [42] and

Koppelman et al. [82] have applied discrete-choice models using data from United Airlines

and Boeing, respectively, to identify the drivers of passengers’ booking decisions across

competing itineraries. Most recently, Lurkin et al. [92] extended the MNL to account for

price endogeneity by using an approach based on instrumental variables. We use the model

estimated in this study in our computational experiments.

In summary, determining the “optimal airline timetable” remains an open question.

All the relevant previous studies are based on incremental improvements to an existing

timetable. Recently, empirical discrete-choice model specifications of airline passenger

choice behavior have become available, but have not been integrated into airline fleeting or

timetabling decisions. Therefore, new methodologies are required to

i. formulate a comprehensive (as opposed to incremental) airline timetabling model

ii. integrate a model of passenger choice that reflects the endogeneity of passengers’

booking decisions.

iii. ensure the tractability of the integrated model.

The rest of the chapter is organized as follows. Section 3.2 presents our integrated com-

prehensive timetabling and fleet assignment model. Section 3.3 presents the multi-phase
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solution approach and our acceleration heuristics. Section 3.4 lists our computational re-

sults using different test networks with varying sizes to highlight the benefits of our solu-

tion approach. Section 3.5 compares the results from our model with those obtained using

a variety of incremental approaches. Section 3.6 presents the results of three different ex-

tensions of our modeling and algorithmic framework. We summarize the main findings of

the chapter and discuss future research opportunities in Section 3.7.

3.2 Integrated Timetable Development and Fleet-Assignment

Model

Our overall modeling architecture is shown in Figure 3.1. Its main element is our inte-

grated timetable development and fleet assignment model, formulated as a mixed-integer

linear program. It takes the perspective of a single airline (the “host airline”, henceforth).

The model’s inputs are the host airline’s available fleet and operating costs, on the supply

side, and the attractiveness of the host airline’s itineraries and its competitors’ itineraries,

on the demand side. These inputs are obtained from a variety of databases as well as air-

craft operating cost models [131] and itinerary choice models [91]. The model is solved

using a multi-phase solution approach along with two heuristics: a Fleet-Fixing Approach

and a Symmetry-Inducing Approach. The model then provides the comprehensive flight

timetables and fleet assignment solutions.

Before proceeding further, two important observations regarding the scope of this re-

search are noteworthy. First, the research focuses on optimizing the timetable development

and fleet assignment decisions from the perspective of a single airline, and assumes that

the decisions of all other airlines are fixed. In practice, one could argue that any scheduling

change from one airline may trigger potential responses from the other airlines. How-

ever, given the complexity of the problem, we ignore these competitive dynamics in this

research, as commonly done in the fleet assignment and schedule design literature. Sec-
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Figure 3.1: Modeling architecture

ond, timetable development and fleet assignment decisions in practice need to take into

account a number of additional considerations that lie out of the scope of this model due

to the limitations of the publicly available datasets. Examples include airport slot and

gate availability constraints—which are typically not too restrictive at most airports in the

United States—and airline crew availability constraints. Adding such considerations into

the model formulation would be relatively straightforward.

In Section 3.2.1, we first describe the underlying methodology used to integrate a pas-

senger choice into a mixed-integer linear programming model. Next, we formulate our

model mathematically in Section 3.2.2.

3.2.1 Passenger Choice Model

A PMM has been the most common approach to model passenger flows in a network of

flights. In one of the first prominent PMM studies, Glover et al. [62] computed the passen-
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ger flows that maximize operating profit, based on a given fleet assignment solution and

passenger demand information. Classical PMM assumes the spill and recapture rates to be

known a priori for each itinerary. These simplified assumptions about passengers’ behav-

iors have been used in airline scheduling and fleet assignment until recently [81, 18]. How-

ever, within the airline revenue management literature, there have been frequent attempts to

integrate discrete-choice passenger behavior models into the revenue optimization formu-

lations [96]. While the scheduling model developed in this chapter can leverage a variety of

such discrete-choice models, we consider here the Generalized Attraction Model (GAM)

recently proposed by Gallego et al. [59].

The GAM was developed to address some inaccuracies stemming from the Indepen-

dence of Irrelevant Alternatives (IIA) property of the more commonly used multinomial

logit model (MNL). These inaccuracies can be described by the so called “Blue-Bus, Red-

Bus Paradox” [23]: Consider a person with a 50% probability of traveling by bus and a

50% probability of driving. If a second bus alternative, with identical attributes as the first

bus alternative, was added, the IIA property would predict that this person has a 33% prob-

ability of taking the existing bus, a 33% probability of taking the newly added bus, and a

33% probability of driving while, in fact, it is more reasonable to expect a 25% probability

of taking each bus and a 50% probability of driving. More generally, even if the attributes

of the two bus alternatives are not identical, there often exist interdependencies between

available and latent alternatives, leading to violations of the IIA property. The GAM ad-

dresses this in a systematic manner by assuming each choice probability to be a function of

the actual attractiveness of all available alternatives as well as the shadow attractiveness of

all alternatives (including those not available). In the context of passenger itinerary choice,

this can be described as follows.

We consider a set of all itineraries offered by the host airline, denoted by I , and assume

that an itinerary set I ′ ⊂ I is actually available to choose from. We denote by ui the

passenger utility associated with itinerary i ∈ I . Let Ai be the attractiveness of itinerary i,
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defined as Ai = eui , and let AO be the attractiveness of the outside option, defined as the

aggregation of all itineraries of all other airlines as well as the no-fly alternative. According

to the MNL, the probability that a passenger will choose any itinerary i ∈ I ′ is equal to the

ratio of its attractiveness to the total attractiveness of all other alternatives, that is,

πMNL
i =

Ai
AO +

∑
j∈I′ Aj

,∀i ∈ I ′; πMNL
i = 0, ∀i ∈ I \ I ′. (3.1)

In the GAM, by denoting the shadow attractiveness of each itinerary i ∈ I by wi, the

probability that a passenger selects any itinerary i ∈ I ′ is modified as follows:

πGAMi =
Ai

AO +
∑

j∈I\I′ wj +
∑

j∈I′ Aj
,∀i ∈ I ′; πGAMi = 0,∀i ∈ I \ I ′. (3.2)

If we define adjusted attractiveness values ÃO and Ãi as ÃO = AO +
∑

i∈I wi and

Ãi = Ai − wi, Equation (3.2) can be simplified as follows:

πGAMi =
Ai

ÃO +
∑

j∈I′ Ãj
,∀i ∈ I ′; πGAMi = 0,∀i ∈ I \ I ′. (3.3)

Careful choice of the shadow attractiveness values can circumvent the aforementioned

“Blue-Bus, Red-Bus Paradox”, and thus provide a more accurate representation of passen-

gers’ booking decisions. Attraction parameters Ãi and the shadow attraction parameters wi

can be obtained based on maximum likelihood estimation and least squares methods [59].

In the remainder of this chapter, we use the GAM model to characterize passenger choice.

3.2.2 Optimization Model Formulation

Throughout this chapter, a “market” is defined as an origin-destination (O-D) pair of air-

ports between which the passengers demand travel. On the other hand, a “segment” corre-

sponds to an ordered pair of airports between which an airline operates nonstop flight(s).
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This distinction between markets and segments stems from the fact that some passengers

use connecting itineraries with more than one nonstop flight to go from their respective

origins to destinations. An “itinerary” represents a sequence of consecutive flights used by

a passenger to complete a trip starting at the origin airport and ending at the destination

airport. For example, if a passenger flies from San Francisco (SFO) to Denver (DEN) and

then to Boston (BOS), the corresponding market is SFO-BOS, the two segments in this trip

are SFO-DEN and DEN-BOS, and the itinerary comprises two specific flights, one from

SFO to DEN and another from DEN to BOS. A “fare class” is defined as one of the mul-

tiple purchasing options provided by the airline in any market, associated with a particular

cabin (e.g., economy, business) and various restrictions (e.g., time of purchase). On the

demand side, “passenger types” refer to different market segments characterized by similar

price sensitivities and time sensitivities. Business and leisure passengers are the two most

common passenger types, but they can also be defined at a finer level of granularity.

We represent timetabling and operating decisions in a time-space network, where each

node is associated with a unique combination of fleet type, airport and time period. The

start node of each flight arc corresponds to the scheduled departure time while the end

node of each flight arc corresponds to the scheduled arrival time plus the minimum aircraft

turnaround time. This is a standard modeling choice in the fleet assignment literature [67].

We consider a full day of operations, which we discretize into 15-minute time periods. We

assume that no more than one flight will be scheduled on any given segment during any

given 15-minute period, a reasonable assumption in practice. For simplicity of the exposi-

tion, we also assume that the flight timetable is repeated daily. Note that this assumption

can be easily relaxed in our formulation (e.g., to capture variations in market demand or

flight frequencies by day of the week or with seasonality).

We now formulate our integrated model of flight timetabling and fleet assignment.

Sets and Indices

AP : Set of all airports served by the host airline; indexed by ap.
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M : Set of all markets served by the host airline; indexed by m.

S : Set of all segments served by the host airline; indexed by s.

So(ap) ⊂ S : Set of segments served by the host airline with airport ap as origin; indexed by s.

Sd(ap) ⊂ S : Set of segments served by the host airline with airport ap as destination; indexed by s.

T : Set of all 15-minute time periods in a day; indexed by t.

F : Set of all fleet types available to the host airline; indexed by f.

PT : Set of all passenger types; indexed by pt.

CL : Set of all fare classes from the host airline; indexed by cl.

FL : Set of red-eye flights of the host airline —that is, set of pairs (s, t) of segments and departure

times such that the corresponding flight is en-route at the beginning of the day.

Im : Set of all itineraries in market m offered by the host airline; indexed by i.

N : Set of all nodes in the time-space network of the host airline; indexed by (f, ap, t), for fleet type f,

airport ap, and time period t.

Ĩm,s,t : Set of all itineraries of the host airline in market m which use a flight on segment s with

departure period t; indexed by i.

Parameters

Demm,pt : Total demand of type pt passengers in market m.

Ai,pt,cl : Attractiveness of itinerary i and fare class cl offered by the host airline for passenger type pt.

Ãi,pt,cl : Adjusted attractiveness of itinerary i and fare class cl offered by the host airline for passenger

type pt.

A0
m,pt : Total attractiveness of all itineraries of other airlines and of the no-fly alternative, in market m,

for passenger type pt.

Ã0
m,pt : Adjusted total attractiveness of all itineraries of other airlines and the no-fly alternative, in
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market m, for passenger type pt.

Pi,cl : Estimated ticket price of fare class cl for itinerary i offered by the host airline.

Opes,f : Operating cost of a flight, on segment s, operated using fleet type f by the host airline.

Capf : Seating capacity of an aircraft of fleet type f.

Freqs : Number of flights of the host airline per day on segment s.

Availf : Available number of aircraft of fleet type f for the host airline.

MinT : The first time period of the day.

MaxT : The last time period of the day.

D(s, t) : Scheduled departure time of a flight of the host airline on segment s with end node in

time period t (after scheduled en-route time plus minimum aircraft turnaround time).

As described in Section 3.2.1, we use a Generalized Attraction Model (GAM) to char-

acterize passengers’ itinerary choice across the set of available alternatives. Note, however,

that compared to the ui and Ai values in Section 3.2.1, we re-define the utility ui,pt,cl and

the attractiveness Ai,pt,cl here as functions of the itinerary, the passenger type and the fare

class. We also re-define the attractiveness (AO in Section 3.2.1) of the outside option as

A0
m,pt so that it is a function of the market and the passenger type. These values are ob-

tained from the passenger utilities derived from the outside option, denoted by u0m,pt. The

utilities ui,pt,cl and u0m,pt are expressed as linear functions of a set of itinerary attributes that

affect passenger choice. For each combination of itinerary i and fare class cl, and for each

passenger type pt, we denote this attribute vector by zi,pt,cl and the corresponding vector of

linear coefficients by βi,pt,cl. For instance, the empirical specification provided by Lurkin

[91] uses the following attributes: total trip time, number of connections, departure time

of the day, ticket price, distance of the itinerary, direction of travel, number of time zones

crossed and departure day of the week. Similarly, for each market m and each passen-

ger type pt, we denote the attribute vector associated with the outside option by z0m,pt and
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the corresponding vector of linear coefficients by β0
m,pt. Finally, we denote by wi,pt,cl the

shadow attractiveness of itinerary i and fare class cl for passenger type pt. We then have

ui,pt,cl =βββi,pt,cl · zi,pt,cl ∀i ∈ Im,m ∈M, pt ∈ PT , cl ∈ CL (3.4)

Ai,pt,cl =exp (ui,pt,cl) ∀i ∈ Im,m ∈M, pt ∈ PT , cl ∈ CL (3.5)

u0m,pt =βββ0
m,pt · z0m,pt ∀m ∈M, pt ∈ PT (3.6)

A0
m,pt =exp

(
u0m,pt

)
∀m ∈M, pt ∈ PT (3.7)

Ãi,pt,cl =Ai,pt,cl − wi,pt,cl ∀i ∈ Im,m ∈M, pt ∈ PT , cl ∈ CL (3.8)

Ã0
m,pt =A0

m,pt +
∑
j∈Im

∑
cl∈CL

wj,pt,cl ∀m ∈M, pt ∈ PT (3.9)

Decision Variables

xs,f,t =

 1 if fleet type f is assigned to a flight on segment s with departure time period t

0 otherwise

y−f,ap,t : Number of aircraft of fleet type f on the ground at airport ap just before period t.

y+f,ap,t : Number of aircraft of fleet type f on the ground at airport ap just after period t.

σ0
m,pt : Sum of the market shares of all itineraries of the other airlines and of the no-fly alternative

in market m for passenger type pt.

σi,pt,cl : Market share of passenger type pt, corresponding to the combination of itinerary i

and fare class cl.

The full mathematical formulation is provided as follows:

Maximize
∑
m∈M

∑
i∈Im

∑
pt∈PT

∑
cl∈CL

(Demm,pt ∗ Pi,cl ∗ σi,pt,cl)−∑
s∈S

∑
f∈F

∑
t∈T

(Opes,f ∗ xs,f,t) (3.10)

subject to: Aircraft count constraints:
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∑
ap∈AP

y−f,ap,MinT +
∑

(s,t)∈FL

xs,f,t ≤ Availf , ∀f ∈ F , (3.11)

Flow balance constraints:

y−f,ap,MinT = y+f,ap,MaxT , ∀f ∈ F , ap ∈ AP , (3.12)

y−f,ap,(t+1) = y+f,ap,t, ∀(f, ap, t) ∈ N , t 6= MaxT, (3.13)

y−f,ap,t +
∑

s∈Sd(ap)

xs,f,D(s,t) = y+f,ap,t +
∑

s∈So(ap)

xs,f,t,

∀(f, ap, t) ∈ N , (3.14)

Demand and capacity constraints:

A0
m,pt ∗ σi,pt,cl ≤ Ai,pt,cl ∗ σ0

m,pt,

∀i ∈ Im,m ∈M, pt ∈ PT , cl ∈ CL, (3.15)∑
m∈M

∑
pt∈PT

∑
cl∈CL

∑
i∈Ĩm,s,t

(Demm,pt ∗ σi,pt,cl) ≤
∑
f∈F

Capf ∗ xs,f,t,

∀s ∈ S, t ∈ T , (3.16)
Ã0
m,pt

A0
m,pt

∗ σ0
m,pt +

∑
i∈Im

∑
cl∈CL

(
Ãi,pt,cl
Ai,pt,cl

∗ σi,pt,cl

)
= 1,

∀m ∈M, pt ∈ PT , (3.17)

Itinerary selection constraints:∑
f∈F

xs,f,t ≥ σi,pt,cl,

∀i ∈ Ĩm,s,t,m ∈M, s ∈ S, t ∈ T , pt ∈ PT , cl ∈ CL, (3.18)

Restrictions on flight leg variables:∑
f∈F

xs,f,t ≤ 1, ∀s ∈ S, t ∈ T , (3.19)∑
t∈T

∑
f∈F

xs,f,t = Freqs, ∀s ∈ S, (3.20)

Variable value constraints:

xs,f,t ∈ {0, 1}, ∀s ∈ S, f ∈ F , t ∈ T , (3.21)

y−f,ap,t, y
+
f,ap,t ∈ Z

+, ∀f ∈ F , ap ∈ AP , t ∈ T , (3.22)

σ0
m,pt ≥ 0, ∀m ∈M, pt ∈ PT , (3.23)
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σi,pt,cl ≥ 0, ∀i ∈ Im,m ∈M, pt ∈ PT , cl ∈ CL. (3.24)

Expression (3.10) formulates the model’s objective function of maximizing the total oper-

ating profit of the airline, which is given by the total fare revenue (across all itineraries in all

markets, all passenger types and all fare classes) minus total cost of operating all scheduled

flights (across all segments, all fleet types and all departure time periods). The constraints

are organized in six categories. First, Constraints (3.11) are the aircraft availability con-

straint which limits the number of assigned aircraft of each type to the available number in

the airline’s fleet. The second category includes flow balance constraints in the airline net-

work. Because our model is a daily scheduling model, Constraints (3.12) require that the

number of aircraft on the ground at any airport at the beginning of the day is equal to that

at the end of the day. Constraints (3.13) and (3.14) ensure the flow conservation of aircraft

across the network of flights. Constraints (3.15) to (3.17) correspond to the demand and

capacity constraints, which belong to the third category of constraints. Constraints (3.15)

define the market share of each itinerary-fare class combination to be proportional to its

attractiveness. This constraint embeds a linearized version of our discrete-choice model of

passengers’ booking decisions, similarly to the approach from Wang et al. [142]. To see

this, observe that it can be re-written as σi,pt,cl ≤
Ai,pt,cl∗σ0

m,pt

A0
m,pt

. In the absence of aircraft ca-

pacity constraints, it would split the demand across all itineraries based on their respective

attractiveness according to Equation (3.3). However, this is modified by Constraints (3.16),

which ensure that the total number of passengers assigned to all itineraries which use a

particular flight does not exceed the capacity of the aircraft type assigned to that flight.

In other words, the inequalities in Constraints (3.15) let passengers shift across itineraries

based on the attractiveness values and aircraft capacity restrictions. Constraints (3.17) then

ensure that the market shares across all alternatives (including the itineraries from the other

airlines and the no-fly alternative) sum up to 1. Fourth, Constraints (3.18) state that no

passenger can be assigned to an itinerary if any of its flight legs is not operated. Fifth, Con-
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straints (3.19) and (3.20) require each segment to be operated at most once per time period

and the total number of flights on each segment to be equal to the daily frequency for that

segment. Note that, in this formulation, daily flight frequency is given as an input to the

model. We relax this assumption in Section 3.6, where we integrate frequency planning

decisions into our modeling framework. Last, Constraints (3.21)-(3.24) define the domain

of definition of the variables.

3.3 Solution Approach

The size of the mathematical model presented in Section 3.2 is extremely large for problem

instances corresponding to the networks of any real-world airlines. As the timetable is dis-

cretized into 15 minute time periods, the time window between 6 am and 12 am (midnight)

includes 18× 4 = 72 time periods. Our largest case studies reported in this research com-

prise instances with 299 segments and 7 aircraft types resulting in 299× 7× 72 = 150, 696

binary variables, each corresponding to a combination of segment, fleet type and time pe-

riod. As we shall see in our results, direct implementation of this model with commercial

solvers does not provide good solutions (or sometimes any solutions at all) in reasonable

times, even upon fine-tuning and carefully optimizing the solver parameters. In order to

solve this large-scale problem, we have also implemented several well-known, state-of-the-

art integer programming solution approaches. However, this did not yield any significant

improvements either.

Thus, we propose, implement and demonstrate a new solution approach, as presented in

Section 3.3.1, which decomposes the computations into multiple phases. Specifically, the

first phase aggregates multiple consecutive time periods at each airport, and aims only to

identify the aggregated time period of each flight. The second phase uses this solution as an

input and identifies a narrower time period when each individual flight will be scheduled.

The third phase is similar to the second, but narrows the time period even further, etc.
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Additionally, we develop and integrate two accelerated rule-based heuristic approaches into

this multi-phase framework based on variable-fixing and symmetry-inducing ideas. We

refer to these heuristic approaches as a Fleet-Fixing Approach and a Symmetry-Inducing

Approach and present them in Section 3.3.2.

3.3.1 Multiple Phase Solution Framework

This multi-phase framework is motivated by the fact that most airlines usually do not op-

erate more than one flight in any given segment of their network within a short continuous

period of time (with a length of, say, 60 minutes). We now describe a general version of the

multi-phase framework with the number of phases equal to N . Let the width of the time

window corresponding to phase i (i ∈ 1, . . . , N) be Wi minutes and let Solutioni be the

solution generated at the end of phase i. In particular, we have WN = 15 minutes. Our

multi-phase solution approach to optimize the flight timetable step-by-step is presented as

Algorithm 1.

Algorithm 1 Multi-phase solution algorithm
1: Initialization: i = 1.
2: Generate the input data to the MILP model (3.10)-(3.24) by setting the width of each

time period equal to W1.
3: Solve the MILP model (3.10)-(3.24), and store Solution1.
4: for i = 2, . . . , N do
5: Generate input data to the MILP model (3.10)-(3.24) by setting the width of each

time period equal to Wi.
6: Add constraints to ensure consistency with Solutioni−1 (see Equation (3.25)).
7: Solve the MILP model (3.10)-(3.24) with these additional constraints, and store
Solutioni.

8: end for
9: Return SolutionN .

We computationally tested several different variants of the general approach described

in Algorithm 1. The best performance was achieved when settingN = 2,W1 = 60 minutes

and W2 = 15 minutes. In other words, we consider a two-phase approach. In Phase I we

solve the model at the hourly level, while in Phase II we use this timetable obtained as Phase
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I’s solution to identify the exact 15 minute period for each flight. Let U be the set of 60-

minute time periods, indexed by u, and let τu denote the 15-minute period corresponding to

the top of the hour u (e.g., if u corresponds to the 8:00-9:00 am hour, then τu corresponds

to the 8:00-8:15 am period). We denote the assignment variables of the Phase I problem by

x
(I)
s,f,u and those of the Phase II problem by x(II)s,f,t. In Phase II we replace Constraint (3.19)

with Constraint (3.25), which ensures that, in any hour, a flight is scheduled in Phase II if

and only if a flight is scheduled in that hour in Phase I.

3∑
i=0

∑
f∈F

x
(II)
s,f,τu+i

=
∑
f∈F

x
(I)
s,f,u, ∀s ∈ S, u ∈ U . (3.25)

3.3.2 Rule-Based Accelerated Heuristic Strategies

We now present two acceleration strategies that, when implemented in combination with

the multi-phase solution framework, will be shown to considerably improve the computa-

tional performance of the solution algorithm.

Fleet-Fixing Approach

The central idea is to fix the fleet type assigned to each flight leg at the Phase I optimal

value rather than re-optimizing it in Phase II, thus considerably reducing the number of bi-

nary decision variables in the Phase II model formulation. This allows the Phase II model

to focus exclusively on timetabling decisions under passenger choice while holding fleet

assignment decisions at their Phase I levels. While this does engender the possibility of

sub-optimality arising from the neglected potential enhancements from Phase II re-fleeting

decisions, it appears reasonable here given our particular emphasis on the timetabling de-

cisions. Moreover, feasibility of the fleet assignment solution is already guaranteed given

the corresponding constraints used when generating the Phase I solution. The results of our

computational experiments presented in Section 3.4 validate the hypothesis that the con-

siderable computational benefits of this heuristic approach more than offset the relatively
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smaller sub-optimality risks. Mathematically, we replace Constraint (3.25) with Constraint

(3.26):
3∑
i=0

x
(II)
s,f,τu+i

= x
(I)
s,f,u, ∀s ∈ S, f ∈ F , u ∈ U (3.26)

Symmetry-Inducing Approach

The central idea is to require the number of flights operated by any aircraft type on any

segment to be equal to the number of flights operated by that same aircraft type on the

“reverse segment”, defined as the segment with the origin and destination equal to the des-

tination and origin, respectively, of the original segment. This idea reduces the number

of binary decision variables (i.e., the xs,f,t variables) by half. Similar to the Fleet-Fixing

Approach, it also generates the risk of sub-optimality. However, real-world airline sched-

ules are often highly symmetric, suggesting that the computational benefits might again

outweigh the risk of sub-optimality. Our computational results, presented in Section 3.4,

support this hypothesis. Note that, in addition to accelerating the solution procedure, the

Symmetry-Inducing Approach has additional practical benefits because it simplifies airline

operations. Mathematically, if RS ⊂ S × S is the set of all unordered segment pairs such

that the two segments in every pair are the reverse segments of each other, then we enforce

Constraint (3.27):

∑
t∈T

xs,f,t =
∑
t∈T

xs′,f,t, ∀f ∈ F , (s, s′) ∈ RS. (3.27)

Unlike the Fleet-Fixing Approach which only applies to Phase II, the Symmetry-Inducing

Approach can be added to Phase I, Phase II, or both. This results in eight potential com-

binations: applying the Symmetry-Inducing Approach or not in Phase I, applying the

Symmetry-Inducing Approach or not in Phase II, and applying the Fleet-Fixing Approach

or not in Phase II. Seven of these eight combinations are listed in Table 3.1. The one in-

volving the Symmetry-Inducing Approach in Phase II but not in Phase I as well as the
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Fleet-Fixing Approach in Phase II has been left out because it will either result in infeasi-

bility (if the Phase I decisions are not symmetric in terms of the assigned fleet types) or be

identical to Heuristic 7.

Table 3.1: Abbreviated description of each of the seven feasible combinations of heuristics

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5 Heuristic 6 Heuristic 7

Phase I Symmetry Symmetry Symmetry Symmetry
Phase II Fixing Symmetry Symmetry Fixing Fixing, Symmetry

Note that, if each optimization problem was solved to optimality, Heuristics 5 and 7

should yield identical optimal solutions because Phase II symmetry is guaranteed by the

combination of the Phase I Symmetry-Inducing Approach and the Phase II Fleet-Fixing

Approach. However, explicit application of the Symmetry-Inducing Approach in Phase II

has an impact on the run-times and memory requirements, and hence on the actual best

solutions obtained within reasonable run-times. Therefore, we retain both Heuristic 5 and

Heuristic 7 in Table 3.1, rather than eliminating one of them. Next, we test and compare

the performances of all seven heuristics.

3.4 Computational Results

We implement the model and the solution approaches to several problem instances based

on the network of Alaska Airlines. Section 3.4.1 presents the computational setup used

in the remainder of this research (unless otherwise specified). The first goal of the experi-

ments reported in this section is to compare the performances, within a given computational

run-time budget, of our solution framework and the various heuristic combinations listed

in Table 3.1 with the performance of a commercial MILP solver. This is presented in

Section 3.4.2. The second goal is to analyze how model’s solutions change over longer

computational time horizons. This is shown in Section 3.4.3.
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3.4.1 Experimental Setup

Our computational test instances are based on the network of Alaska Airlines. In our

datasets, obtained for year 2016, Alaska Airlines was a moderate-sized hub-and-spoke air-

line carrier in the United States. In 2016, Alaska Airlines operated a mixed fleet consisting

primarily of the Boeing 737 family aircraft. It operated its largest hub at Seattle, WA and

two secondary hubs in Anchorage, AK and Portland, OR. Alaska Airlines underwent a

merger with Virgin America in 2017. As a result, there are interesting opportunities to

analyze the effects of the merger on the optimal timetables and fleet assignment solutions

of the combined carrier using the model and algorithms developed in this research. We

perform this analysis in Section 3.6.3.

We design a series of test instances increasing in size. We refer to these instances as

Network 1 to Network 5—containing 5 to 59 airports. Table 3.2 reports the number of

airports and flights in each network and the corresponding sizes of the optimization model

(Equations (3.10)-(3.24)).

Table 3.2: Descriptions of the five networks under consideration, and respective problem
sizes.

# variables

Network # airports # flights continuous binary integer # constraints

Network 1 5 92 66,625 9,000 3,600 156,725
Network 2 7 126 130,585 17,640 5,040 290,015
Network 3 14 210 450,385 60,840 9,360 932,820
Network 4 17 232 1,066,000 144,000 14,400 2,140,005
Network 5 59 390 39,665,860 5,358,240 87,840 74,438,915

We now describe how the model’s input parameters can be obtained or approximated

from available public data sources and from the existing literature. First, the number of

daily flights in each nonstop segment, denoted as Freqs in our model, is computed as the

average number of flights per day operated in January 2016, obtained from the Airline On-

Time Performance (AOTP) database [28]. The number of available aircraft of each fleet
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type can be obtained from the carrier’s website. However, the publicly available numbers

include aircraft used for international flights (which are not included in our model) and

aircraft undergoing repair and maintenance; as such, they do not necessarily coincide with

the actual numbers of aircraft used for domestic flights. Therefore, we obtain the number of

aircraft of each fleet type used for domestic flights by Alaska Airlines in January 2016 by

assigning each tail number to a fleet type, and computing the number of aircraft operating

daily for each fleet type. We set the earliest departure time (MinT ) at 6 am and the latest

departure time (MaxT ) at 12 am, since over 98% of Alaska Airlines’ flights are scheduled

to depart between 6 am and 12 am. We only consider nonstop and one-stop itineraries in

this research, which together account for 97.5% of the one-way air passenger trips in the

United States [20]. Minimum aircraft turnaround times are all assumed to be 45 minutes.

To construct connecting itineraries, we consider passenger connection times within the

range of 45 to 180 minutes. We do not consider interline connections (that is, a connection

from a first-leg flight flown by the host carrier and a second-leg flight flown by another

airline, or vice versa). In practice, these assumptions can be easily relaxed depending on

the practical requirements. For instance, minimum aircraft and passenger connection times

can be varied as a function of the airport and the time of day; in addition, circuity can be

used to reduce the number of feasible itineraries that are generated.

We use the estimates of flight operating costs from Swan and Adler [131] to calibrate

the parameter Opes,f as a function of segment distance (Ds) and aircraft capacity (Capf ).

Equations (3.28) and (3.29) describe this relationship for short-haul flights (defined as those

on segments of less than 3,106 Miles, or 5,000 Kilometers in length) and long-haul flights

(defined as those on all other segments), respectively.

Opts,f = (1.6Ds + 722) ∗ (Capf + 104) ∗ $0.0190 if Ds ≤ 3, 106 miles (3.28)

Opts,f = (1.6Ds + 2200) ∗ (Capf + 211) ∗ $0.0115 if Ds > 3, 106 miles (3.29)
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The airfares used as inputs to our model are computed, using the Airline Origin and

Destination Survey (DB1B) data from the Bureau of Transportation Statistics [29], as the

average ticket price values for each combination of year, quarter, origin airport, destination

airport, connection airport (if any), first leg carrier, and second leg carrier (if any). Note that

we use quarterly average values because ticket price information at a finer granularity is not

available publicly. However, the airlines (the intended users of our methodology) do have

access to such information for their own flights, and also typically for the flights of their

competitors (at least in an approximate manner). Our methodology is able to accommodate

such departure-time-dependent price values whenever such data is available.

We obtain passenger demand data on each O-D market from the DB1B database, which

we use to define our parameters Demm,pt. We calibrate our GAM model of passenger

choice (Equations (3.4) to (3.9)) as follows. For simplicity, we first assume only one pas-

senger type and one fare-class. This means that the set PT of passenger types and the

set CL of fare clases are both singletons. Extensions involving multiple passenger types

and multiple fare classes are presented in Section (3.6.1). For each itinerary (from the host

airline as well as other airlines), we compute the corresponding utility values using the em-

pirical specification from Lurkin [91]—as mentioned earlier, the corresponding attributes

are: total trip time, number of connections, departure time of the day, ticket price, distance

of the itinerary, direction of travel, number of time zones crossed and departure day of the

week. Given the lack of available data and research studies on the attractiveness of the

no-fly alternative, we ignore this term in our GAM specification. Note that this assump-

tion is reasonable since our demand estimates correspond to the actual number of flying

passengers, and does not include latent not-flown demand. We have conducted a detailed

numerical investigation into the effects of this assumption, and concluded that this choice

does not change our conclusions to any significant extent. Finally, in the absence of the

availability of accurate empirical estimates, we set all the shadow attractiveness values to

0. This, once again is a limitation arising from the fact that we don’t have access to pro-
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prietary passenger booking data (though the airlines do have access to it), which will allow

estimating the shadow attractiveness values using the maximum likelihood estimation and

least squares methods as mentioned in Section (3.2.1) [59].

All experiments reported in this chapter are performed on a server with 128GB of RAM

and Linux Operating System. We implement the algorithms using Java along with the latest

version of the CPLEX MILP solver - CPLEX 12.7 - with default parameter settings.

3.4.2 Comparison of Heuristics

In this section, we evaluate and compare the computational performance of the multi-phase

solution approach and the different heuristics presented in Section 3.3. Results are reported

in Table 3.3. For each of the five networks, we consider two baselines obtained by imple-

menting the model directly in CPLEX without any of the solution approaches or heuristic

ideas introduced in Section 3.3. First, “CPLEX Short” corresponds to the solution ob-

tained after a relatively short run-time (fixed at two hours here). Second, “CPLEX Long”

corresponds to the solution obtained after a longer run-time of 48 hours. This essentially

provides the best solution that can be obtained directly with a commercial solver. For each

of our seven heuristics (referred to as “H 1” to “H 7”), the run-time limit is set at one hour

for Phase I plus one hour for Phase II, resulting in a two-hour total run-time limit which

makes it comparable with the “CPLEX Short” results. In Table 3.3, we use the “CPLEX

Long” solution as the baseline against which all other results are evaluated. The results

indicate the percentage improvement in operating profit for each approach when compared

to the “CPLEX Long” baseline. In other words, for each solution approach and each test

instance, the table reports the % gap defined as O−O∗
O∗

, where O is the objective function

value obtained by that particular solution approach and O∗ is the corresponding objective

function value obtained by directly running CPLEX for 48 hours. Thus, any positive results

in Table 3.3 indicate that the particular solution approach results in a larger operating profit

value than can be obtained directly with CPLEX even after running it for a much longer
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time.

Table 3.3: Relative performance of each solution approach, as compared to the “CPLEX
Long” solution

Problem CPLEX Our Heuristics
Short Long H 1 H 2 H 3 H 4 H 5 H 6 H 7

Network 1 -3.58% 0% 0.20% 0.59% -5.87% -0.98% 0.54% -6.32% 0.28%
Network 2 -12.21% 0% 2.05% 2.81% 2.32% 2.51% 3.25% 2.16% 1.94%
Network 3 -11.03% 0% -0.43% -1.74% -0.96% -0.93% -1.82% -1.19% -1.82%
Network 4 -16.98% 0% -5.88% -3.51% -3.14% -2.80% -3.51% -3.07% -3.50%
Network 5 No solution 0% 25.72% 21.08% 25.08% 42.82% 40.59% 42.11% 40.39%

The main takeaway from Table 3.3 is that the combination of our multi-phase solu-

tion approach and the acceleration heuristics provide high-quality and scalable solutions,

as compared to a direct CPLEX implementation. For the smallest instance (Network 1),

four of our seven heuristics (Heuristics 1, 2, 5 and 7) outperform a direct CPLEX imple-

mentation, even when our approaches are run for only two hours while CPLEX is allowed

to run for 48 hours. Additionally, Heuristic 4 also outperforms the CPLEX solution with

comparable run-times (i.e., two hours). The improvements relative to a direct CPLEX im-

plementation are far more dramatic under Networks 2, 3, 4 and 5, which are larger in size.

For these four larger instances, each of our seven heuristics performs substantially better

than running CPLEX directly for the same amount of run-time (i.e. for two hours). Typi-

cally, the larger the size of the network, the bigger and more obvious is the improvement

(barring the better-than-expected performance of our heuristics on Network 2). For the en-

tire domestic network of Alaska Airlines (i.e. Network 5), CPLEX does not generate even

a feasible solution within two hours. In contrast, all seven of our heuristics produce an

improvement of 20% to 40% within a two hour run-time when compared with the CPLEX

implementation run for 48 hours. In summary, all seven of our heuristics outperform a di-

rect CPLEX implementation within a much lower run-time budget for the largest network.

Next, let us compare the relative performance of the seven heuristics with each other,

with a particular focus on Network 5. Our heuristics that apply the Symmetry-Inducing
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Approach in Phase I (Heuristics 4 to 7) (42.82%, 40.59%, 42.11%, 40.39%) significantly

outperform those that do not (Heuristics 1 to 3) (25.72%, 21.08%, 25.08%). This suggests

that the Symmetry-Inducing Approach can greatly improve the solution quality in Phase I

and thus lead to a superior final solution. This result further validates the effectiveness of

the symmetry-inducing heuristic.

3.4.3 Evolution of Objective Function Values With Increasing Run-

Times

When we implement our model directly in CPLEX for Network 5, we observe that the best

available solution improves very slowly. Specifically, an initial feasible solution is found

after little more than two hours, but further improvement is then very small (less than 1%)

even after running the solver for up to 15 hours. In contrast, our heuristics improve the

solution quality much sooner as we increase their run-time beyond two hours. Thus, it is

insightful to plot side-by-side the performance of our heuristics in terms of the evolution

of the objective function values of the best available solutions against their run-times. The

results shown here are based on the entire domestic network of Alaska Airlines (Network

5) as the test instance and Heuristic 4 as the solution approach, which was the best solution

approach based on the results from Table 3.3.

Figure 3.2 presents two horizontal lines and four curves. The black horizontal line

corresponds to the objective function value obtained by the direct CPLEX implementation

after it is run for 48 hours. The green horizontal line corresponds to the objective function

value obtained by running our Heuristic 4 for 24 hours in Phase I and then running its Phase

II until it runs out of memory (i.e., for 1.5 hour in this case). Each curve corresponds to a

different Phase I run-time (namely, half hour, 1 hour, 2 hours, and 4 hours) for our Heuristic

4. The x-axis corresponds to the total run-time of the overall heuristic (combining the

Phase I and Phase II run-times) and the y-axis corresponds to the objective function value

corresponding to the best available solution. For each curve, we plot the objective function
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Figure 3.2: Evolution of the objective function value versus run-time (obtained with Heuris-
tic 4 on Network 5)

value until the computer runs out of memory.

First, the left most curve curve demonstrates that our heuristic generates a substantially

better solution, in less than one hour of run-time, compared to the solution obtained by a

direct CPLEX implementation with a 48 hours run-time. In most cases, as the run-time

increases, the solution quality increases and the improvements happen in jumps as and

when a better solution than the previous one is obtained by the solver. However, in most

cases, the solution quality improvements taper off after a certain point in time, which is an

indicator of the quality of the corresponding Phase I solution. We observe that each of the

four curves ends because the Phase II model eventually runs out of memory approximately

two hours after Phase II begins. In addition, a longer Phase I run-time leads to better quality

of the eventual Phase II solution. This makes sense because a longer Phase I run-time

allows for a better chance to find a superior solution, which serves as a better starting point

for the Phase II model. Note that this relationship is non-linear though. For example, the

curves corresponding to one hour and two hour Phase I run-times have the same ultimate
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objective function value, which means that the additional hour spent in Phase I does not

help in finding a better eventual solution. In contrast, increasing the Phase I run-time from

two hours to four hours results in a significant improvement in the ultimate profit value.

In fact, the solution obtained after a four-hour run-time in Phase I is within 5% of the one

obtained with a 24-hour run-time in Phase I, which indicates the quality of our heuristics

in terms of generating high-quality solutions in reasonable computational times.

These results provide valuable insights into the quality of our solution approach. In-

deed, even with a much shorter run-time (two hours), our solution approach generates a

solution that yields a profit improvement of over 40% when compared with the solution

obtained by a direct CPLEX implementation that runs for 48 hours. One of the main

contributors to these high-quality solutions is the application of the Symmetry-Inducing

Approach in Phase I. These results underscore the benefits that can be derived from the

model developed in this research in support of airline timetabling. In addition, they also

highlight the trade-off between the run-time and the quality of the generated solution. In

particular, a noteworthy aspect of Figure 3.2 is that each of the four curves experiences

a sudden and significant jump within the first half hour of Phase II run-time. In general,

timetabling problems are strategic in nature and hence allow for large budgets of compu-

tational times. However, these jumps indicate that, in the event that the run-time budget

is somewhat limited, even a half hour Phase II run-time can yield a good solution. This

ability to quickly generate a high-quality timetable can be highly valuable to airlines even

in the strategic context of flight timetabling, as it enables repeated runs of the model solu-

tion process to conduct sensitivity analyses and scenario analyses as part of the long-term

decision-making processes.
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3.5 Benefits of Timetabling

The mathematical modeling and computational framework for comprehensive timetable

development that integrates fleet assignment decisions and passengers’ booking decisions

developed in this research differs from existing approaches in two major ways. First, ex-

isting schedule design models consider a feasible flight timetable as a starting point, and

perform incremental changes to it to determine the new timetable. Second, the airline plan-

ning process is typically conducted in a sequential rather than an integrated manner. In

other words, (incremental) timetable development takes place first, and then, fleet assign-

ment decisions are optimized using the previously determined timetable as an input. In this

section, we compare our integrated approach to these various existing approaches that have

been presented in the previous literature and/or used in practice.

3.5.1 Experimental Setup

We aim to evaluate the benefits of our modeling and computational framework by compar-

ing it to a number of baselines. As the first baseline, we use our passenger choice model

to evaluate the operating profits corresponding to the actual timetable and the actual fleet

assignment solution used by the airline. This implies fixing all timetabling and fleet as-

signment decision variables at their real-world values, and replicating passengers’ booking

decisions for these specific flight offerings. We designate this as Baseline 0.

Next, we consider the various incremental models replicating the approaches presented

in the literature. We design three baselines (Baseline 1, Baseline 2 and Baseline 3) cor-

responding to different levels of incremental changes in the airline planning process. In

Baseline 1, we only optimize the fleet assignment decisions (i.e., assigning aircraft types

to all flight legs to maximize the total operating profits) while holding the timetabling de-

cisions fixed at their real-world values. This aims to replicate many past studies (e.g.,

Barnhart et al. [18]), which have focussed on the fleet assignment problem with passenger
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spill and recapture effects. By comparing the operating profits corresponding to Baseline 1

with those corresponding to Baseline 0, we evaluate the benefits of optimal fleet assignment

decisions alone, while incorporating passenger choice.

Then, the focus of Baseline 2 is to measure the combined effects of optimizing fleet

assignment decisions and incremental changes in flight timings. This is motivated by the

results from Sherali et al. [120], which suggest that incremental changes to flight departure

times can create more connection opportunities for passengers. Specifically, we develop

two baselines, referred to as Baseline 2-a and Baseline 2-b, both of which combine the fleet

assignment problem with the problem of flight re-timing within designated time windows.

Time windows in Baseline 2-a are 30 minutes in width (i.e., the departure time of each

flight is allowed to be modified by at most 15 minutes in either direction), while those in

Baseline 2-b are 60 minutes in width (i.e., the departure time of each flight is allowed to be

modified by at most 30 minutes in either direction).

Next, in addition to optimizing fleet assignment and flight re-timing decisions within

designated time windows, Baseline 3 also allows elimination of any subset of the flights

designated as optional. This follows multiple previous research studies (e.g., Lohatepanont

and Barnhart [89], Sherali et al. [119]) that designate flights as either mandatory or op-

tional, thus allowing the optimization model to consider eliminating some of the flights

designated as optional. To the best of our knowledge, none of the existing studies in the

literature provides any guidance regarding how to designate any given flight as mandatory

or optional. For our experiments under Baseline 3 we designate all Hub-to-Hub flights as

optional. But in order to maintain consistency across our results, we ensure that the total

daily frequency in each nonstop segment (including the Hub-to-Hub segments) remains

constant. Specifically, on each Hub-to-Hub segment, we generate one additional flight at

the “midpoint” of any pair of two consecutive flights, and label all Hub-to-Hub flights as

optional. For instance, if on a given segment an airline has two flights scheduled to depart

at 2 pm and 6 pm, respectively, then we include in our model a total of five optional flights
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on that segment with proposed scheduled departure times of 10 am (the midpoint of 6 am

and 2 pm), 2 pm (the other departure time currently offerred), 4 pm (the midpoint of 2 pm

and 6 pm), 6 pm (one of the currently offerred departure times) and 9 pm (the midpoint

of 6 pm and 12 am). Ultimately, the ratio of the total number of optional flights to the

number of optional flights to be selected on each Hub-to-Hub segment is slightly higher

than 2:1. Similar to Baseline 2, we also divide Baseline 3 into two different experiments:

Baseline 3-a has a 30-minute wide time window for each flight (e.g., the aforementioned

five flights can be scheduled any time during 9:45-10:15 am, 1:45-2:15 pm, 3:45-4:15 pm,

5:45-6:15 pm, and 8:45-9:15 pm, respectively), while Baseline 3-b has a 60-minute wide

time window for each flight (e.g., the aforementioned five flights can be scheduled any

time during 9:30-10:30 am, 1:30-2:30 pm, 3:30-4:30 pm, 5:30-6:30 pm, and 8:30-9:30 pm,

respectively).

We solve each of these six baseline cases (Baselines 0, 1, 2-a, 2-b, 3-a, 3-b) by imple-

menting them directly in CPLEX. We compare the results of these with the outputs of our

heuristics for solving our model formulation given by (3.11)-(3.24). Additionally, we also

compare them with the solution obtained by running for 48 hours a direct CPLEX imple-

mentation of our model formulation given by (3.11)-(3.24) (referred to as CPLEX Directly).

In order to ensure a fair comparison of the results, we run each model for a total run-time of

48 hours. Our heuristics are allowed to run for a maximum of 24 hours of Phase I run-time

and a maximum of 24 hours of Phase II run-time (or until it runs out of memory). Base-

line 0 and Baseline 1 are successfully solved to their respective optimal solutions within

the 48 hours of their allocated run-time. But provably optimal solution for Baselines 2-a,

2-b, 3-a, 3-b was not obtained within 48 hours of run-time. In addition to this so-called

cold start solution approach, we also experimented by using a warm start approach. The

general idea of a warm start is to help CPLEX by providing an existing (hopefully good)

feasible solution as a starting point. Specifically, in an attempt to generate a better solution

for Baseline 2-a, we initialize it with the optimal solution from Baseline 1. Similarly, we
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warm-start Baseline 2-b and Baseline 3-a both with the best available solution from Base-

line 2-a, we warm-start Baseline 3-b with the best available solution from Baseline 2-b, and

we warm-start CPLEX Directly with the best available solution from Baseline 3-b. Each

of these warm starts leverages provably feasible solutions obtained from previous problem

implementations. No warm start strategy is used when implementing the heuristic solution

approaches developed in this research.

Note that there is no guarantee that any warm start approach produces a better solution

than a cold start approach. In fact, for both Baseline 2-a and Baseline 2-b, we found that

the warm-start solutions are inferior to their corresponding cold start solutions, while in

all other comparisons, warm start solutions were found to be superior to the cold start

solutions. For example, the cold start solution of Baseline 3-b is even worse than the best

available solution for Baseline 2-b, but its warm start Baseline 3-b is considerably better.

When it comes to the CPLEX Directly approach, a cold start implementation of our model

does not even yield a feasible solution within 48 hours. In contrast, warm start at least

guarantees that its solution is not inferior to the best available solution of Baseline 3-b.

In the remainder of this section, we report, for all baselines and for the CPLEX Directly

approach, the results obtained by using the warm start or the cold start, whichever produces

a superior solution.

3.5.2 Benefits of our Modeling and Computational Framework

Table 3.4 reports the profit generated by each of the baseline approaches, the CPLEX Di-

rectly approach, and two of our heuristics. These results correspond to the test instance

corresponding to the full domestic network of Alaska Airlines (Network 5). For simplicity

and to save some space, we only report the results obtained with the heuristic that performs

the best (Heuristic 5, here) and the one that performs the worst (Heuristic 6, here) among

Heuristics 4-7, which were shown in Table 3.3 to be the better-performing ones. Note that

the relative performance of the heuristics is different from the one elicited in Table 3.3, be-
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cause Table 3.3 reported results obtained with a one-hour run-time in each phase, while we

allow here for a run-time of up to 24 hours in each phase. Moreover, the worst-performing

heuristic among Heuristics 4-7 (Heuristic 6) is the only one that does not ensure symme-

try in the Phase II solution (see Table 3.1) either through explicit induction of symmetry

or through fixing of fleet types in Phase II or both. This further emphasizes the benefits

of our Symmetry-Inducing Approach, not only in Phase I but also in Phase II. For each

of these tests, Table 3.4 presents a variety of summary statistics characterizing operating

profits, revenues and costs. The numbers in parentheses provide changes in comparisons to

Baseline 0. They are calculated as z∗−z0
z0

, where z∗ is the value of the relevant statistic for

the solution under consideration and z0 is the corresponding value for the solution obtained

with Baseline 0.

Table 3.4: Benefits of our approach compared to various baselines

Profit ($) Revenue Operating Number of Passengers
Total ($) Nonstop ($) One-stop ($) Cost Nonstop One-stop

Baseline 0 3,125,862 9,085,984 7,453,217 1,632,766 5,960,139 33,637 7,288
(0%) (0%) (0%) (0%) (0%) (0%) (0%)

Baseline 1 3,451,808 9,267,774 7,600,360 1,667,414 5,816,174 34,259 7,444
(+10.46%) (+2.00%) (+1.97%) (+2.12%) (-2.42%) (+1.85%) (+2.14%)

Baseline 2-a 3,823,542 9,664,902 7,547,487 2,155,916 5,879,861 34,134 9,076
(+22.36%) (+6.37%) (+1.26%) (+32.04%) (-1.35%) (+1.48%) (+24.53%)

Baseline 2-b 4,085,654 9,981,443 7,396,392 2,585,051 5,895,790 33,450 10,305
(+30.75%) (+9.86%) (-0.76%) (+58.32%) (-1.08%) (-0.56%) (+41.40%)

Baseline 3-a 3,913,461 9,788,934 7,512,856 2,276,078 5,875,979 33,890 9,546
(+25.24%) (+7.74%) (+0.80%) (+39.40%) (-1.41%) (+0.75%) (+30.98%)

Baseline 3-b 4,138,876 10,038,133 7,426,230 2,612,097 5,899,452 33,576 10,539
(+32.45%) (+10.48%) (-0.36%) (+59.98%) (-1.02%) (-0.18%) (+44.61%)

CPLEX Directly 4,138,876 10,038,133 7,426,230 2,612,097 5,899,452 33,576 10,539
(+32.45%) (+10.48%) (-0.36%) (+59.98%) (-1.02%) (-0.18%) (+44.61%)

Heuristic 6 (worst) 4,312,706 10,259,745 7,431,617 2,828,218 5,947,039 33,696 10,916
(+38.01%) (+12.92%) (-0.29%) (+73.22%) (-0.21%) (+0.17%) (+39.78%)

Heuristic 5 (best) 4,903,946 10,838,131 7,505,688 3,332,443 5,934,645 34,165 12,484
(+56.93%) (+19.28%) (+0.70%) (+104.10%) (-0.43%) (+1.57%) (+71.30%)

As expected, the profit values are found to increase when transitioning from each base-

line to the next, as the solution space is progressively expanded to allow for additional

flexibility in the flight timetabling and fleet assignment processes. Then, note that when we
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use Baseline 3-b’s best available solution to initialize the direct CPLEX implementation

of our model formulation, that solution still remains the best available solution even after

running CPLEX for 48 hours. In contrast, the implementation of any of our four heuristics

(even the one that performs the worst) results in a larger profit value than the best available

baseline. Further profit improvements can be achieved through the implementation of the

heuristics that perform better. In summary, the rank ordering of the various solutions listed

in Table 3.4 based on their operating profits is Baseline 0 < Baseline 1 < Baseline 2-a

< Baseline 3-a < Baseline 2-b < Baseline 3-b = CPLEX Directly < Worst heuristic <

Best heuristic. These results suggest that the combination of our integrated comprehensive

timetabling and fleet assignment formulation and our solution approaches can provide sig-

nificant profit improvements, as compared to all existing approaches. We now compare the

solutions obtained under each modeling and solution approach in more detail.

First, compared to Baseline 0, Baseline 1 allows capturing more passengers and hence

more revenue in certain markets by allocating larger aircraft. The total number of pas-

sengers being carried increases from 40,925 to 41,703 (a 1.90% increase) leading to an

increase in total revenue from $9,085,984 to $9,267,774 (a 2% increase). Additionally, it

also assigns smaller aircraft to certain other flights with empty seats leading to a reduction

in the operating cost from $5,960,139 to $5,816,174 (a 2.42% decrease). Thus, through

fleet assignment optimization in Baseline 1, operating profit increases from $3,125,862 to

$3,451,808 (a 10% increase).

Compared to Baseline 1, Baseline 2-a allows adjusting flight departure times within

time windows of ±15 minutes. While the number of nonstop passengers decreases slightly

(by 125 from 34,259 to 34,134) when compared to Baseline 1, the number of one-stop

passengers increases significantly from 7,444 to 9,076 leading to a $488,502 increase in

one-stop revenue. This is further amplified in Baseline 2-b which allows adjusting flight

departure times within time windows of ±30 minutes. This results in the number of one-

stop passengers increasing to $10,305 but in the number of nonstop passengers decreasing
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to $33,450. The one-stop revenue improvement in Baseline 2-b leads to a further profit

increase. These effects stem from small departure time adjustments that result in slightly

less attractive scheduled times for nonstop passengers, but generate more connection op-

portunities for one-stop passengers.

Going from Baseline 2-a to Baseline 3-a, and from Baseline 2-b to Baseline 3-b, the

optional flights on Hub-to-Hub segments afford additional timetabling flexibility. These

result in an increase in the number of one-stop passengers (by 470 and 234 respectively),

and a corresponding increase in one-stop revenues. As a result, the total profit increases by

$89,919 and $53,222 respectively. The difference is likely because the ±30 minutes time

windows in case of Baseline 2-b already provide significant scheduling flexibility, so the

additional gains by allowing optional flights in Baseline 3-b are more modest than those

obtained by moving from Baseline 2-a to Baseline 3-a.

The last three rows list the results generated by a direct CPLEX implementation and our

heuristics for solving our model formulation. As noted earlier, the direct CPLEX imple-

mentation of our model formulation does not improve on the solution provided by Baseline

3-b even after 48 hours. In contrast, the results obtained with any our heuristics yield

significant profit improvements over all baseline solutions. Particularly noteworthy is the

fact that our heuristics presented in Table 3.4 have nonstop revenues that are very simi-

lar to (or sometimes even lower than) the various baselines being considered. Moreover,

the operating costs of the solutions from our heuristics are actually slightly higher than all

baselines except for Baseline 0. However, the solutions given by our heuristics have sig-

nificantly greater one-stop revenues compared to all the baselines. This highlights the fact

that most of the benefits from our approaches are derived from an increase in the availabil-

ity of attractive one-stop itineraries. All the baseline approaches ranging from Baseline 0

to Baseline 3-b, either do no allow timetabling changes or allow only for certain marginal

changes. This limits the airline’s ability to provide flight offerings that enable passengers

to choose their most desired one-stop itineraries. In contrast, our model’s flexibility due
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to its comprehensive approach to timetabling, and its explicit capture of passenger choice

decisions allows it to increase the number of one-stop passengers, and consequently the

total one-stop revenue and the total operating profit, dramatically. In addition to increased

profitability, the additional one-stop passenger capture also enhances the airline’s market

share significantly —an added advantage of our approach. In conclusion, the combination

of our formulation of the comprehensive integrated timetabling and fleet assignment opti-

mization model with passenger choice with our heuristic solution approaches produces the

solutions with, by far, the highest operating profits and market shares.

3.5.3 Comparison with Actual Timetable

We conclude this section with a comparison of the solution generated by our modeling and

computational framework to the actual timetable produced by Alaska Airlines in 2016. Un-

fortunately, a full apples-to-apples comparison is not possible, since our modeling approach

necessarily omits a number of practical considerations that play a role in the development of

the airline’s actual timetable. We thus only report aggregate metrics in Table 3.5; nonethe-

less, the comparison sheds light on the main differences between the model’s solution and

the actual solution.

The observations from Table 3.5 are threefold. First, on the supply side, the model re-

allocates some of the aircraft seats from Hub-Hub segments to Spoke-Hub segments. In-

terestingly, the number of nonstop passengers on Spoke-Hub segments is actually slightly

lower in our solution; this suggests that the added seats on Spoke-Hub segments aim to

increase connectivity into the host airline’s Hub airports. Obviously, the solutions also

differ in terms of timetabling, which is not shown here. Second, the model results in a

slight increase in the total number of nonstop passengers—by an estimated 1.57%. This is

mainly driven by an 8.2% increase in the number of nonstop passengers on Spoke-Spoke

segments. This is primarily achieved by aligning flight timetables with the (estimated) pro-

files of passenger demand. Third, the main difference between the two timetables lies in
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Table 3.5: Comparison of model solution to actual timetable

Metric Segment Actual Model

Number of seats Hub-Hub 8,539 8,129
Hub-Spoke 38,435 38,435
Spoke-Hub 38,373 38,783
Spoke-Spoke 9,757 9,757
Total 95,104 95,104

Number of nonstop passengers Hub-Hub 661 665
Hub-Spoke 14,408 14,615
Spoke-Hub 14,605 14,597
Spoke-Spoke 3,963 4,288
Total 33,637 34,165

Number of connection opportunities Hub-Hub-Hub 8 12
Spoke-Hub-Spoke 1,707 2,714
Hub-Hub-Spoke 147 286
Spoke-Hub-Hub 252 275
Total 2,114 3,287

Number of connecting passengers Hub-Hub-Hub 153 194
Spoke-Hub-Spoke 4,754 9,185
Hub-Hub-Spoke 1,304 1,604
Spoke-Hub-Hub 1,077 1,501
Total 7,288 12,484

the dramatic increase in the number of connection opportunities, and the resulting number

of connecting passengers. Interestingly, the percentage increase in the number of connect-

ing passengers is even larger than the percentage increase in the number of connection

opportunities, suggesting positive ripple effects of network connectivity.

These findings highlight the main drivers of network-wide timetable optimization, namely

(i) the alignment of each flight’s timetable with the patterns of nonstop passenger demand,

and (ii) the coordination of flight timetables across multiple segments to enhance connec-

tion opportunities and cater to higher numbers of connecting passengers.

3.6 Extensions

We now propose a number of modeling, computational and practical extensions of our ap-

proach, using the full domestic network of Alaska Airlines. This aims to provide additional
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insights into the benefits of the model developed in this research and to characterize the op-

timal scheduling strategies for major airlines. First, in Section 3.6.1, we perform additional

computational experiments with multiple passenger types (e.g., business and leisure) and

multiple fare classes. While all results presented so far in this chapter have been based on

instances involving a single passenger type and a single fare class, the optimization for-

mulation (Equations (3.10)-(3.24)) and the solution heuristics make no such assumption.

Therefore, we can use our modeling and computational framework to capture the fact that

airlines offer multiple fare classes and cater to passengers with different sensitivities to the

itinerary attributes such as price, departure time, etc. Second, in Section 3.6.2, we extend

our modeling and computational framework to integrate frequency planning decisions into

our timetable development and fleet assignment framework. This is motivated by the sig-

nificant impact of frequency planning decisions on an airline’s profit and the strong interde-

pendencies of frequency planning decisions with timetable development, fleet assignment

and passenger choice. Last, the recent merger between Alaska Airlines and Virgin Amer-

ica is expected to have an impact on various aspects of the new merged airline’s network,

schedules and operations. We use our framework to analyze the effects of this merger on

their optimal flight schedules in Section 3.6.3.

Throughout this section, we compare the results using our modeling and computational

framework in different test instances. Unlike the previous sections, the focus is less on the

comparison of our various heuristics with each other and with various baselines. Instead,

we tested all heuristics in Section 3.6.1, and found that Heuristic 7 is best one among all

seven heuristics (i.e., the one that leads to the highest profit value) when tested with a run-

time of 24 hours in Phase I and 24 hours in Phase II (or until it runs out of memory). Thus,

we choose Heuristic 7 as the solution approach in this section to analyze these extensions.
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3.6.1 Effects of Multiple Passenger Types and Multiple Fare Classes

So far, as a simplification, our computational experiments have only considered one pas-

senger type and one fare class. In reality, passengers differ in terms of the relative value that

they place on different itinerary attributes. For example, business travelers typically place a

higher emphasis on schedule convenience and flexibility, while those flying for leisure pur-

poses are often more price sensitive. Airlines, in turn, are also known to offer various fare

classes, through different marketing and sales channels, during various time periods prior to

the scheduled flight departure time, in an attempt to price different passengers differently.

Detailed modeling of airline pricing and revenue management strategies is considerably

beyond the scope of this research, not only because of the prohibitive mathematical model-

ing burden of tackling such analysis but also because of the lack of any public source of the

relevant pricing and revenue management data. Instead, in this section, we test our model

with multiple passengers types (market segmentation) and multiple fare classes (differen-

tial pricing) to evaluate its potential to handle more complex pricing scenarios if such data

were available. Given this relatively modest goal, we introduce three new parameters K1,

K2 and K3 to simulate various hypothetical segmentation and pricing scenarios.

In this subsection, we make the simplified assumption that passengers are divided into

two categories (business and leisure travelers), that the proportion of business travelers is

identical across all markets, and that the airline offers only two fare classes. Specifically,

parameter K1 quantifies the fare differences across the two fare classes. Let us define High

Fare = µ+K1σ and Low Fare = µ−K1σ, where µ and σ denote the average and standard

deviation of the fares for each combination of year, quarter, origin airport, destination air-

port, connection airport (if any), first leg carrier, and second leg carrier (if any) as obtained

from the Bureau of Transportation Statistics [29]. Also, parameter K2 is defined as the

fraction of passengers that belong to the category of business passengers in every market

(so 1 − K2 is the fraction belonging to the category of leisure passengers). In addition,

parameter K3 ≥ 1 distinguishes between the utility functions of business and leisure pas-
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sengers (Equation (3.4)). Particularly, business passengers are assumed to be willing to

pay higher fares in return for more convenience. We capture this by multiplying by K3

the original parameters (βi,pt,cl) corresponding to departure time of the day, total trip time

and number of connections, and by multiplying by 1/K3 the original parameter of ticket

price. In contrast, leisure passengers have a lower willingness to pay, but are more willing

to accept longer travel times and more connections, and are less sensitive to departure time

of the day. So we capture this by multiplying by 1/K3 the original parameters (βi,pt,cl) cor-

responding to departure time of the day, total trip time and number of connections, and by

multiplying byK3 the original parameter of ticket price. Note thatK1 captures the airline’s

pricing and revenue management decisions, whileK2 andK3 are parameters characterizing

the passenger mix and the extent of heterogeneity of preferences across passenger types,

respectively.

Table 3.6 reports various statistics about the solutions obtained with Heuristic 7 for

various combinations of parametersK1,K2 andK3 in the following ranges: 0 ≤ K1 ≤ 2.5,

0.25 ≤ K2 ≤ 0.75 and 1 ≤ K3 ≤ 3. Results related to the business passengers who are

estimated by the model to purchase a High Fare ticket are reported in the column titled

“Business - High Fare”, and analogous definitions follow for the columns titled “Business -

Low Fare”, “Leisure - High Fare” and “Leisure - Low Fare”. For each group, we also report

the airline’s market share in the corresponding segment. For example, the market share in

the “Business - Low Fare” column corresponds to the percentage of business passengers

who purchase low-fare tickets of the host airline.

In our first set of experiments (rows 2 to 7), we vary K1 while holding K2 and K3

fixed at 0.5 and 2 respectively. These experiments test the effects of an airline changing

its pricing strategy by increasing the differential between the fares offerred in different

fare classes. Results suggest that, initially, an increase in K1 value (i.e., stronger price

differentiation) enables profit increases. However, beyond K1 = 2, further increase in

K1 seems to decrease profits indicating that K1 = 2 is a “sweet spot” in terms of profit
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Table 3.6: Market share (“MS”) and revenue with two passenger types and two fare classes

K1, K2, K3 Profit ($) Business - High Fare Business - Low Fare Leisure - High Fare Leisure - Low Fare
MS (%) Revenue ($) MS (%) Revenue ($) MS (%) Revenue ($) MS (%) Revenue ($)

1 0, 0.5, 1 5,126,077 27.7 2,586,802 28.3 2,572,984 29.2 2,613,427 26.6 2,559,731

2 0, 0.5, 2 5,464,520 32.0 2,825,312 31.5 2,792,126 25.2 2,177,928 25.3 2,176,134
3 0.5, 0.5, 2 6,204,507 66.9 7,542,689 2.6 426,659 18.5 2,266,630 16.7 1,155,479
4 1, 0.5, 2 7,677,795 71.2 10,088,041 0.3 304,903 9.0 1,656,606 15.5 694,036
5 1.5, 0.5, 2 8,941,834 70.0 12,132,213 0.1 263,742 4.4 1,296,431 13.4 403,797
6 2, 0.5, 2 9,570,268 70.3 13,175,734 0.01 226,523 2.1 1,027,068 12.5 280,414
7 2.5, 0.5, 2 9,104,495 68.4 11,746,180 ≤ 0.01 112,976 1.1 563,873 12.4 201,961

8 1.5, 0.25, 2 3,197,389 68.2 5,613,404 0 69,189 3.6 1,888,882 19.5 768,085
9 1.5, 0.75, 2 11,123,013 68.1 15,607,341 0 236,678 4.0 328,252 15.3 143,042

10 2, 0.25, 2 4,185,653 70.0 6,789,939 ≤ 0.01 71,200 2.0 1,835,970 16.4 637,795
11 2, 0.75, 2 13,594,989 68.7 18,230,991 0.02 156,213 2.2 327,148 9.4 74,142

12 2.5, 0.25, 2 4,660,549 69.1 7,418,060 0 89,448 1.1 1,733,964 12.3 568,131
13 2.5, 0.75, 2 15,440,792 67.5 20,163,128 ≤ 0.01 138,322 1.1 255,162 8.9 49,716

14 2, 0.5, 1.5 9,856,410 65.1 12,883,967 ≤ 0.01 228,283 4.8 1,547,928 10.6 353,773
15 2, 0.5, 3 10,106,673 77.3 14,251,949 ≤ 0.01 147,803 0.5 654,061 12.5 228,943

maximization. Compared to charging a single fare value to all passengers (i.e., K1 = 0),

offering two different fares (K1 6= 0) may allow for considerable increases in total profit

with a maximum profit increase (among the tested values) of over 80%. The incremental

revenue clearly comes from the business passengers purchasing higher fare tickets.

In the second set of experiments (rows 8 and 9), we vary K2 from 0.25 to 0.75 (as com-

pared to 0.5 in row 5), withK1 = 1.5 andK3 = 2. This assesses the effect of changes in the

mix of business versus leisure passengers on the optimal timetabling and fleet assignment

solutions. Note that the market share for each category does not fluctuate much as the value

of K2 changes (between rows 5, 8 and 9), but the operating profit increases significantly

as K2 increases. This is expected, as higher values of K2 induce a higher proportion of

business passengers. We obtain similar insights in rows 10 and 11 (as compared to row 6)

and in rows 12 and 13 (as compared to row 7) for K1 = 2 and K1 = 2.5, respectively.

Next (in rows 14 and 15), we vary K3 from 1.5 to 3 (as compared to 2 in row 6), with

K1 = 2 and K2 = 0.5. We find that the operating profit increases with increasing value

of K3. This is because a major driver of operating profits is the “Business - High Fare”

revenue, and larger values of K3 induce a lower price-sensitivity of business passengers

(hence increasing the airline’s ability to extract more revenue on that segment).
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We caution the reader not to interpret the absolute numerical values of results presented

in Table 3.6 and in this subsection too literally, because they are based on the aforemen-

tioned highly approximate input parameter assumptions. Accurate values of these inputs

are available to an airline interested in using these models and algorithms as decision sup-

port. But, more importantly, the relative values provide valuable insights. Consistent with

the revenue management literature, they underscore the impact of market segmentation and

differential pricing on airline operating profitability, even when integrated with timetable

development and fleet assignment. Moreover, we find that integrating downstream revenue

management dynamics, even in an approximate manner, can improve the flight timetabling

and fleet assignment solutions. The model and solution approaches developed in this chap-

ter are endowed with this capability.

3.6.2 Integration with Frequency Planning Decisions

In general, when an airline decides to serve a nonstop segment, frequency plans are estab-

lished first, usually a year or more before actual departure time. The next step, timetables

of departure times and aircraft rotations are established up to 2-6 months before actual

departure time [15]. Joint optimization of flight frequency, timetabling and fleet assign-

ment decisions, given their obviously interdependent nature, can potentially yield much

larger profit increases than only optimizing the timetabling and fleet assignment decisions.

However, flight frequency decisions also depend on a variety of strategic and operational

considerations such as, airline business strategy, aircraft orders, airport presence consider-

ations, airport gate and slot availability, etc., which are beyond the scope of this research.

It would be naive to assume that airlines can easily make significant changes to their flight

frequencies even if these changes indicate a potential for additional profit. In view of these

factors, we analyze the impact of some incremental frequency planning flexibility by al-

lowing the daily frequency to fluctuate within±1 and±2 from the existing frequency value

on each segment. This is formulated by replacing Constraint (3.20) by Constraint (3.30)
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with ∆ = 1 and ∆ = 2, respectively. Specifically, note that we retain the aircraft count and

flow balance constraints to ensure that the schedule remains feasible.

Freqs −∆ ≤
∑
t∈T

∑
f∈F

xs,f,t ≤ Freqs + ∆, ∀s ∈ S, (3.30)

Table 3.7 compares the optimal solutions of our integrated approach when frequency is

held constant on all segments, when frequency is allowed to fluctuate by at most ±1, and

when frequency is allowed to fluctuate by at most ±2. For each case, we report several

summary statistics to characterize the airline’s revenue, operating cost and profit, as well as

the number of passengers carried across all Hub-to-Hub (”HH”), Hub-to-Spoke and Spoke-

to-Hub (”HS”), and Spoke-to-Spoke (”SS”) segments. Here, Seattle (SEA), Anchorage

(ANC) and Portland (PDX) are labeled as hub airports and all others are labeled as spoke

airports. For each metric, the table reports the relative change from the baseline case where

frequency is held constant.

Table 3.7: Effect of integration with frequency planning

Profit ($) Revenue Operating Flights Number of Passengers
Total ($) Nonstop ($) One-stop ($) Cost # Total # HH # HS # SS Nonstop One-stop

±0
4,757,042 9,931,526 6,990,814 2,940,712 5,175,311 395 30 329 36 31,622 11,042

(0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%) (0%)

±1
5,576,506 12,127,852 7,905,909 4,221,942 6,551,824 468 28 398 42 35,865 15,350

(+17.23%) (+22.80%) (+13.66%) (+44.58%) (+31.69%) (+18.48%) (-6.67%) (+20.97%) (+16.67%) (+14.14%) (+39.90%)

±2
5,869,752 13,029,865 8,384,640 4,645,224 7,160,609 516 28 440 48 38,056 17,383

(+23.39%) (+31.94%) (+20.54%) (+59.08%) (+43.93%) (+30.63%) (-6.67%) (+33.74%) (+33.33%) (+21.11%) (+58.43%)

Table 3.7 shows that, from ±0 to ±1 margin, total operating profit increases consid-

erably (by 17.23%), while from ±1 to ±2 margin, there is a smaller additional increase

(from 17.23% to 23.39%). Analogously, the increase in the total number of flights from

±0 to ±1 margin is larger (73) than that from ±1 to ±2 margin (48). Nonstop revenue

increases from $6.99 million to $7.91 million to $8.38 million as we go from ±0 to ±1

to ±2 margin while the one-stop revenue increases from $2.94 million to $4.22 million

to $4.65 million. The large percentage increase in one-stop revenue could be explained

by the fact that most of the increase in the number of flights is on the Hub-to-Spoke and
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Spoke-to-Hub segments. These additional flights contribute moderately to increased non-

stop revenue, but very significantly toward a large percentage increase in one-stop revenue

by providing better connecting service to many of the low-demand markets that cannot sup-

port nonstop flights. This is also reflected in the large percentage increase in the number of

one-stop passengers (39.90% and 58.43% increases corresponding to the±1 and±2 cases,

respectively).

As mentioned earlier, frequency planning is a highly complex step in an airline’s sched-

ule planning process and it requires paying attention to a variety of strategic and operational

considerations. We only consider marginal deviations from existing flight frequency values

as a way to demonstrate the ability of our overall modeling and computational approach

to provide decision support for the joint optimization problem of frequency planning,

timetable development and fleet assignment, by potentially incorporating these strategic

and operational considerations. The actual implementation and evaluation of a compre-

hensive frequency planning optimization problem using our modeling and computational

framework is an interesting direction for future research.

3.6.3 Impact of an Airline Merger

On December 6th, 2016, the United States Department of Justice approved Alaska Airlines’

merger with Virgin America, allowing them to form the fifth largest airline in the United

States. Before this merger, Alaska Airlines had its main hubs at Seattle (SEA), Portland

(PDX) and Anchorage (ANC) while Virgin America had its main hubs at San Francisco

(SFO) and Los Angeles (LAX). In addition, Alaska’s original fleet consisted exclusively

of the Boeing 737 fleet family, while Virgin’s consisted exclusively of the Airbus 320 fleet

family. The merger created interesting opportunities to assess the effectiveness of the com-

bined airline in serving the joint network and leveraging the newly heterogeneous fleet to

generate new connecting itineraries.

We apply our modeling and computational framework to evaluate and optimize the
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timetable of the combined airline. The results are presented in Table 3.8. Columns 2 and 3

correspond to the optimal solution obtained using our modeling and computational frame-

work separately for each of the two airlines. Column 4 reports the total values correspond-

ing to Columns 2 and 3, which serves as the benchmark for comparing the post-merger

optimal solutions for the joint airline. After the merger, we evaluate scenarios considering

various degrees of integration between the two airlines (Columns 5, 6, 7 and 8). At one

end, Column 5 reports a case where the airlines continue to operate the same timetables

as before the merger. Any improvement in this case comes from the additional passenger

connection opportunities arising from joining of the two networks. Solutions in Columns 4

and 5 correspond to the same flight timetables fleet assignmentd, leading to the same total

operating cost value, but have different passenger flows and hence different revenue values.

Column 6 reports the benefits of re-optimizing the timetabling as well as the fleet assign-

ment decisions jointly for the combined airline. Additionally, past literature has stated the

possibility of unit operating cost reductions achievable due to a merger, resulting from a

better reallocation of capital and labor resources leading to more efficient utilization of

staff, fuel and maintenance services [103]. Columns 7 and 8 account for this possibility

by re-optimizing the timetables and the fleet assignment decisions of the joint airline while

assuming a network-wide unit operating cost reduction by 1% and 5%, respectively. All

percentage changes reported in Columns 5 through 8 are calculated based on the corre-

sponding numbers in Column 4 used as the baseline.

As expected, compared to Column 4, the one-stop revenue increases significantly (by

almost 20%) in Column 5, due to the additional passenger connection opportunities. At the

same time, this gets partly offset by lower nonstop revenue because of the displacement of

some of the nonstop passengers by the one-stop passengers in this process. This leads to

a small increase in the operating profit (< 1%). From Column 5 to Column 6, we observe

a significant (7.34%) additional increase in operating profit. This is due to a considerable

increase in nonstop as well as one-stop revenue which more than compensates for some
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Table 3.8: Assessment of the impact of a merger on the optimal timetabling and fleet as-
signment decisions

Pre-Merger Post-Merger
Alaska Airlines Virgin America Total Fixed TT Opt TT Opt TT Opt TT

No CR No CR 1% CR 5% CR

# of daily flights 395 142 537 537
# unique destinations 59 21 61 61
# fleet types 133 54 187 187

Total passengers 48,691 20,023 68,714 66,901 68,000 67,879 67,570
(0%) (-2.64%) (-1.04%) (-1.22%) (-1.66%)

Total profit ($) 4,885,476 3,365,813 8,251,289 8,318,420 8,929,319 8,985,121 9,206,315
(0%) (+0.81%) (+8.22%) (+8.89%) (+11.57%)

Nonstop revenue ($)
7,651,437 4,812,711 12,464,148 11,962,136 12,242,570 12,144,660 12,079,316

(0%) (-4.03%) (-1.78%) (-2.56%) (-3.09%)

One-stop revenue ($)
2,438,974 525,247 2,964,221 3,533,683 3,958,583 4,059,515 4,056,083

(0%) (+19.21%) (+33.55%) (+36.95%) (+36.83%)

Operating cost ($)
5,204,934 1,972,465 7,177,399 7,177,399 7,272,717 7,219,288 6,929,173

(0%) (0%) (+1.33%) (+0.58%) (-3.46%)

*Fixed TT No CR: Fixed timetable and no operating cost reduction.
*Opt TT No CR: Optimized timetable and no operating cost reduction.
*Opt TT 1% CR: Optimized timetable and 1% operating cost reduction.
*Opt TT 5% CR: Optimized timetable and 5% operating cost reduction.

of the corresponding increase in operating cost. In this case, the new fleet assignment

solution allows carrying more passengers in profitable markets to increase total revenue.

In other words, the merger alone (i.e., the new passenger connection opportunities) results

in very small benefits, but the combination of the merger and the re-optimization of flight

timetables and fleet assignment solutions results in significant profit improvement.

Under the last two scenarios (i.e., Columns 7 and 8), reductions in unit operating costs

result in further improvements in operating profits, as expected. Note, however, that the

nonstop revenue decreases while the one-stop revenue increases, compared with Column

6, and that these two effects balance each other out resulting in negligible change in total

revenue. Hence the profit enhancements almost exactly reflect the effects of cost reduc-

tions. As a result, the profit increase in the 5% cost reduction scenario in Column 8 when

compared to that without any cost reduction in Column 6, is approximately five times the

profit increase in the 1% cost reduction scenario when compared to that without any cost

reduction in Column 6. Interestingly, in each of the post-merger scenarios (i.e., Columns 5

through 8), the total number of passengers stays below the pre-merger value (i.e., Column

4), and yet they all have higher profits than that in the pre-merger scenario. This under-
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scores the fact that more passengers need not lead to higher profits. Columns 5 and 6, in

particular, highlight the benefits of being able to solve a larger optimization problem thus

enabling the capture of more lucrative passengers, which in turn increases the revenue and

profit.

Figure 3.3: In-depth analysis of the estimated fare revenue by airport

Figure 3.3 presents more in-depth analysis of the changes in total revenue correspond-

ing to Columns 4 and 6 of Table 3.8. It displays the top seven airports of the joint Alaska-

Virgin network ranked by the estimated number of departing passengers in the optimized

solution. Additionally, it also shows the combined data for the three airports in the New

York City area (EWR, LGA and JFK, referred to as “NYC”). Interestingly, we observe a

post-merger revenue decrease only at the three hubs of the original Alaska Airlines net-

work (namely, SEA, PDX, and ANC). Each of the other airports (including “NYC”) shows

a post-merger revenue increase between 6% and 44%. In particular, the two hubs of Virgin

America (SFO and LAX) as well as San Diego (SAN) and Las Vegas (LAS) show consid-

erable increase in total passenger revenue, which appears to further strengthen the joint air-

line’s position in the West Coast markets. In other words, our integrated flight timetabling
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and fleet assignment approach enables re-allocation of aircraft resources to flight segments

that leverage the combined network of the two airlines and resulting passenger connection

opportunities, in turn leading to increased operating profitability.

3.7 Conclusion

We develop an original modeling and computational framework to comprehensive timetable

development and fleet assignment under endogenous passenger choice. Given the flight

frequency on each nonstop segment, unconstrained passenger demand in each market and

the airline’s fleet availability, the approach produces flight timetables and fleet assignment

solutions that maximize the airline’s profit. Our mathematical model leverages a sales-

based linear programming approach that explicitly incorporates the attractiveness of each

itinerary and the resulting passenger booking decisions within a large-scale mixed-integer

optimization model of airline scheduling. This problem is extremely difficult to solve using

off-the-shelf optimization solvers. Therefore, we design a multi-phase solution framework

and several additional heuristics to enable practical implementation of the model in rea-

sonable computational times that are consistent with the practical requirements for solving

such problems of strategic nature.

In a case study setting leveraging data from a major hub-and-spoke airline carrier in

the United States, computational results demonstrate that our algorithm consistently and

substantially outperforms a direct implementation of the model using a commercial mixed-

integer optimization solver. Most importantly, comparisons with baselines that replicate the

various incremental scheduling approaches found in the literature and/or in practice sug-

gest that the real power of the approach developed in this chapter lies in the combination

of our original modeling framework and our original solution approaches, which can result

in significant profit improvements (ranging between 15% and 40%). We also presented a

series of additional extensions to integrate frequency planning decisions, to capture the ef-
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fects of market segmentation and revenue management practices, and to study the impacts

of an airline merger on the optimal timetabling and fleet assignment solutions at various

degrees of post-merger integration. These experiments and results demonstrate the versa-

tility and usability of our approach for a variety of strategic planning decisions made by

major airlines.
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Chapter 4

Transit Planning Optimization under

Ride-hailing Competition and Traffic

Congestion

Virtually every major city is experiencing rapid growth of ride-hailing as an alternative

mode of urban transportation. McKinsey & Company [97] reports that in the United States,

the vehicle miles traveled by Uber and Lyft each month increased from 30 million in 2013

to 500 million in 2016—reflecting an annual growth rate of 150%. Even though ride-hailing

accounts for only 1% of the nation-wide traffic, its strong spatial concentration results in

significant traffic increases in the densest metropolitan areas [41]. This transformation pro-

vides clear opportunities to enhance urban mobility, due to the convenience of smartphone

technology and cashless transactions, competitive prices, and low wait times enabled by a

broad driver base [43]. But it also creates a number of challenges for urban planners and

policy-makers.

One of these challenges is declining public transit ridership in many cities worldwide

[see, e.g., 146, 136]. This decline can stem from public transit deficiencies, falling gas

prices and increased car ownership, but also the new availability of ride-hailing. Graehler

105



et al. [63] find that the ride-hailing entry reduces transit ridership by 1% to 2% each year—

leading to a 12.7% reduction in bus ridership in San Francisco since Uber’s entry in 2010.

A second challenge is growing traffic congestion, which is responsible for annual costs

estimated at $160 billion in the United States in 2014 [115]. While traffic congestion is

not a new phenomenon, several reports argue that it is amplified by ride-hailing [see, e.g.,

112, 52]. Mangrum and Molnar [93] document a 15.8% increase in median travel times

in Midtown Manhattan between 2013 and 2016, most of which is caused by an increase in

vehicle supply due to taxi deregulation and ride-hailing growth. A recent study from Uber

and Lyft suggests that ride-hailing contributes to a spike in vehicle miles traveled in six

major US metropolitan areas [56]. At least in theory, these effects could be explained by the

fact that ride-hailing increases demand for roadway usage (due, in part, to the displacement

of public transit demand) and induces idle driving between trips. In summary, while ride-

hailing creates critical opportunities for urban mobility, it also puts cities at risk of running

empty subways and buses while roads become increasingly congested.

What can cities do in this environment? A first (quite drastic) option is to cap the

number of ride-hailing vehicles. In 2018, for instance, New York City limited the num-

ber of new ride-hailing licenses; Austin, TX even attempted to ban ride-hailing platforms

altogether. A second option is to use congestion pricing. For instance, New York City

started charging a $2.75 surcharge per ride-hailing trip in January 2019; Singapore’s Elec-

tronic Road Pricing system charges a toll in the busiest areas; and the San Francisco airport

charges extra fees to ride-hailing vehicles. A third (less punitive) option is to partner with

ride-hailing providers. For instance, public transit authorities can leverage ride-hailing to

provide first- and last-mile services for public transit (as piloted in San Francisco, Atlanta,

Philadelphia), to subsidize trips for disabled or low-income residents (as piloted in Pinel-

las County, FL), and to respond to 911 calls (as proposed in Washington, DC). Another

option—which can perhaps be more easily implemented in the short term—is to revise

public transit schedules to complement ride-hailing. This is the focus of this research.
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Specifically, this research optimizes public transit schedules, given inter-modal compe-

tition with ride-hailing and its impacts on road congestion. This approach takes the per-

spective of a city planner, who adjusts the frequency and schedule of service on each public

transit line in order to enhance urban mobility and mitigate congestion. The approach is

applied here to tactical adjustments of transit schedules; it could also be applied to strategic

network design—by proposing new candidate transit lines and optimizing frequency and

timetabling on this new network.

The problem of public transit planning is not new—it has been around for decades. But

what is new is the increased availability of ride-hailing that provides a viable transportation

option on many origin-destination pairs where previous alternatives to public transit were

too expensive or too inconvenient. At the same time, public transit remains more attractive

on other origin-destination pairs with severe road congestion or high ride-hailing prices.

The growth of ride-hailing thus raises the following question: how shall a public transit

authority re-allocate its resources to provide better mobility options where ride-hailing is

least competitive, and perhaps divert resources away from areas that are well-served by

ride-hailing? To answer this question, this research provides a new scheduling toolbox

that captures the interdependencies between public transit schedules, ride-hailing, traffic

congestion, and travelers’ mode choices.

This research comes at a time of major opportunities for city planning authorities. De-

spite the overall decline in public transit, transit ridership has been on the rise in a few

cities that underwent major overhauls of their transit networks [137]. Notably, Seattle and

Houston added new rail services and re-oriented buses to add frequency on critical lines.

Shortly thereafter, transit ridership increased in these two cities by 4.1% and 2.3%—the

largest growth numbers in the United States [129]. This suggests opportunities to compre-

hensively revise transit networks to meet changing demand patterns in the new era where

travelers’ behaviors are shaped by public transit offerings, ride-hailing offerings, and traffic

congestion. Yet, there is limited research that provides a blueprint on how to achieve these
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objectives. Our research does just that.

The remainder of the chapter is organized as follows. Section 4.1 reviews the relevant

literature. Section 4.2 presents our mathematical model. Section 4.3 describes our iterative

solution algorithm. Section 4.4 reports results from our case study in New York City.

Section 4.5 confirms the robustness of our results to model specifications. Section 4.6

synthesizes our findings.

4.1 Literature Review

This research lies at the intersection of public transit, traffic congestion and ride-hailing

operations. Each of these fields includes vast streams of studies. Thus, we stay focused

on the literature that is most closely related to our central question: how can we enhance

transit schedules while accounting for the presence of ride-hailing to improve the overall

urban transportation ecosystem?

4.1.1 Public Transit Planning

Public transit planning is often broken down into three main steps: 1) network design,

which determines stop locations and routes; 2) line planning or frequency setting, which

determines the set of transit lines and line frequencies; and 3) timetabling, which deter-

mines the transit vehicle departure times [65]. From the 1970s, transit network design has

captured researchers’ attention [see, e.g. 36]. Objective functions include social welfare

maximization [39, 45], minimization of the generalized travel costs of walking, waiting,

schedule displacement, and transfers [47], minimization of total costs of passenger travel,

vehicle operations and stop construction [98], etc. Computationally, the network design

problem is highly complex, often requiring metaheuristics like genetic algorithms, local

search, simulated annealing and tabu search [see, e.g., 54, 46]. Line planning and fre-

quency setting also have a long history [see, e.g., 58, 34]. Recent studies have focused on
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improving system-wide efficiency or minimizing social costs [114, 113, 27, 69]. They also

rely on metaheuristics [11, 133], or branch-price-cut algorithms [40].

Within the timetabling literature, a major stream of studies has focused on improving

passenger transfers and transit vehicle synchronization [70, 35, 130, 149, 66, 87]. Another

stream of studies minimizes the weighted sum of passenger costs and operational costs

[see, e.g., 33, 21] or maximizes a social welfare function combining travel times reduction,

passenger transfer opportunities, vehicle utilization and operator profitability [e.g., 79, 80,

104]. Various analytical [see, e.g., 153] and computational [see, e.g., 37] approaches have

been developed for welfare maximization in transit timetabling.

This research contributes to the literature on public transit planning by explicitly inte-

grating the effects of traffic congestion and ride-hailing on service frequency and timetabling—

thus providing insights on how transit systems can evolve to best respond to contemporary

urban challenges.

4.1.2 Relationship between Traffic Congestion and Public Transit

Modeling traffic flows and road congestion has a long history [see, e.g., 44, 94]. However,

the optimization literature on understanding the effects of transit network changes on road

congestion is relatively scarce. Farahani et al. [55] review the related problems of road

network design and public transit network design. Anderson [10] points out the potential

benefits of public transit for congestion mitigation—even for commuters who rarely use

public transit, since transit passengers would otherwise have predominantly traveled on the

most congested roads at the most congested times. Small [124] and Winston and Maheshri

[148] point out that public transit investments involve high construction and operating costs,

are not necessarily the most economical congestion mitigation options. Therefore, this re-

search focuses on transit frequency planning and timetabling, instead of network redesign.

Related to our research, Beaudoin et al. [22] show that the optimal design of public transit

systems should consider not only the welfare of public transit users, but also the effects
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on automobile users and resulting congestion. Their result indicates that a 10% increase in

transit capacity reduce the number of vehicles on the road by 0.7%. In this research, we

leverage these interdependencies by designing adjustments to public transit schedules that

can bring system-wide benefits, given traffic congestion patterns.

There is also some work focusing on the effects of road congestion on public transit

delays and passenger waiting times [9]. However, this type of interdependence is out of

the scope of this research. Instead, we assume that transit operations are not significantly

affected by road traffic flows. So this research is most directly relevant for transit systems

for which this property holds—including trams, passenger trains, rapid transit, and buses

that use dedicated lanes. For other bus services, the approach developed in this research

serves as an approximation.

4.1.3 Ride-hailing Operations

The emergence of ride-hailing platforms has generated a fast-growing field of research

in operations management, information systems and transportation science. For instance,

Cachon et al. [31] and Banerjee et al. [14] compare dynamic and static pricing for two-sided

ride-hailing platforms with strategic customers and self-scheduled capacity. Taylor [135]

and Bai et al. [12] optimize pricing policies in strategic queuing settings where customers

balance prices and wait times. Bimpikis et al. [26] show that differentiating prices based

on origin and destination can enhance the platform’s revenues.

At the operational level, the optimization of ride-hailing operations can be formulated

as a pickup and delivery problem—which is highly difficult to solve [88, 109]. Alonso-

Mora et al. [8] decompose the network into many sub-networks to reduce the dimension-

ality. Fagnant et al. [53], Steiner and Irnich [127] focus on the impact of ride-hailing on

public transit, congestion, and the environment. Agatz et al. [3], Wang et al. [144], Lee and

Savelsbergh [85], Chen and Nie [38], Stiglic et al. [128] consider ride-hailing as a feeder

system for public transit to address the “first-mile” and “last-mile” problems. In this re-

110



search, we instead revise public transit schedules in view of ride-hailing operations, in

order to maximize the resulting transit benefits.

4.2 Model Description

In this section, we present our Mixed Integer Nonlinear Programming (MINLP) model of

transit scheduling with endogenous passenger choice and road congestion. We first specify

our setting and assumptions. We then define the notation and formulate the mathematical

model.

4.2.1 Setting and Assumptions

We define a transit line as an ordered sequence of transit stops consecutively traversed by a

transit vehicle, and an edge in the network as the ordered pair of transit stops sequentially

traversed by a transit vehicle. A transit passenger itinerary is a sequence of transit stops,

and the corresponding sequence of departure times, that could be sequentially traversed by

a passenger along the transit network (not necessarily on the same vehicle due to possible

line transfers). A road network consists of a set of nodes and road segments (continuous

stretches of road between two consecutive nodes). An origin-destination (OD) pair is

defined as an ordered pair of nodes. A road travel path is made up of a sequence of road

segments that connects the two end nodes corresponding to an OD pair.

Figure 4.1 explains these concepts using a simple example with three transit stops. Stop

a is on line 1, Stop c is on line 2, and Stop b is on both lines. For the OD pairOrigin-Dest,

the transit passengers need to walk from Origin to Stop a, take transit line 1 from Stop

a to Stop b, transfer at Stop b to line 2, travel via line 2 from Stop b to Stop c, and then

walk to Dest from Stop c. The road network in this small example consists of four road

segments: Origin− E, E −Dest, Origin−D and D −Dest. If the passenger chooses

ride-hailing, the ride-hailing vehicle can take either of two paths: Origin−E −Dest and
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Origin−D −Dest.

Figure 4.1: An example network

Besides ride-hailing and public transit, we define an outside option that encompasses

all other modes of transportation (e.g., walking, self-driving, biking) and the option to not

travel at all. We assume that the service level of this outside option is exogenous. Its

“market share” corresponds to the fraction of passengers that travel neither by transit nor

with ride-hailing.

4.2.2 Mathematical Notations

Sets

Q : Set of OD (origin-destination) pairs, indexed by (o, d).

H : Set of passenger types, indexed by h.

VT : Set of vehicle types in the transit system, indexed by v.

ST : Set of first and last stops of all transit lines.

G : Set of all transit lines, indexed by g.

Vg : Subset of vehicle types compatible with transit line g.
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Gost,v : Subset of transit lines compatible with vehicle type v with stop st as origin.

Gdst,v : Subset of transit lines compatible with vehicle type v with stop st as destination.

Eg : Set of edges of the transit network that constitute transit line g, indexed by e.

PT ′ : Set of all transit timeslots during the modeling horizon, indexed by t.

PT : Subset of all transit timeslots during the optimization horizon, indexed by t.

Iall : Set of possible transit itineraries, indexed by i.

Iod : Subset of transit itineraries for passengers traveling on OD pair (o, d).

Ĩe,g,t : Subset of transit itineraries which use edge e in transit line g, with line departure time t.

T T ′ : Set of all traffic timeslots during the modeling horizon, indexed by tt.

T T : Set of all traffic timeslots during the optimization horizon, indexed by tt.

Pall : Set of possible travel paths through the road network, indexed by p.

Pod : Subset of travel paths corresponding to OD pair (o, d).

SN all : Set of road segments in the road network, indexed by s.

SN p : Subset of road segments in travel path p.

A few comments are noteworthy. First, each passenger type h ∈ H defines a group of

passengers with similar preferences and attributes. In this research, we consider passenger

heterogeneity along two dimensions: time sensitivity (more time-sensitive vs. less time-

sensitive passengers) and preferred departure time (e.g., passengers who wish to travel

ideally at 7 am, at 8 am, at 9 am, etc.). Second, the subsets Vg reflect that each vehicle

can only operate on a subset of transit lines, due to design and engineering characteristics.

Third, a transit timeslot and a traffic timeslot are defined as the smallest units of time

discretization used for transit timetabling and traffic flow modeling, respectively (they do

not necessarily coincide). Fourth, the line departure time is defined as the planned departure

time of a transit vehicle from the first stop on a transit line, and the line end time is defined

113



as the sum of the line departure time, scheduled transit time, and minimum maintenance

time (if any). Fifth, the optimization horizon is defined as the period for which we optimize

transit schedules. However, transit vehicles whose line departure times are just before the

optimization horizon also continue to run in the early part of the optimization horizon,

and thus have an impact on decisions during the optimization horizon. Similarly, transit

vehicles whose line departure times are at the end of the optimization horizon need to

account for passenger demand immediately thereafter. Therefore, the modeling horizon

starts before the optimization horizon and ends after the end of the optimization horizon.

This explains the difference between PT ′ and PT and between T T ′ and T T . Note that

we only optimize the timetable in the optimization horizon; for the other time periods in

the modeling horizon, we take the actual timetable as an input.

Parameters

Demod,h : Demand of passengers of type h on OD pair (o, d).

Availv : Number of available transit vehicles of type v.

MinPT/MaxPT : First (resp. last) transit timeslot of the optimization horizon.

OpeTRg,v : Transit unit operating cost for line g for vehicle type v.

Capv : Passenger-carrying capacity of a transit vehicle of type v.

V ehs,tt : Number of vehicles on road segment s in traffic timeslot tt (excluding ride-hailing).

DCod,h : Cost of the outside option for passengers with type h on OD pair (o, d).

AOod,h : Attractiveness of the outside option for passengers with type h on OD pair (o, d).

D(g, t) : Line departure time of a transit vehicle on line g whose line end time is in transit timeslot t.

ETVv,g,t : Number of operations on transit line g with line departure time t using transit vehicle type v

that start before the optimization horizon (i.e., t < MinPT ) and that end after the start time of the

optimization horizon (“early transit vehicles”).

Direct Decision Variables
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xv,g,t : Number of services on line g with line departure time t using vehicle type v.

Indirect Decision Variables

aTRi,h /s
TR
i,h /tc

TR
i,h : Attractiveness (resp., market share and generalized travel cost) corresponding to

transit itinerary i for passengers with type h.

aRod,h,tt/s
R
od,h,tt/tc

R
od,h,tt : Attractiveness (resp., market share and generalized travel cost) corresponding

to ride-hailing trips departing in traffic timeslot tt for passengers with type h on OD pair (o, d).

sOod,h : Market share of the outside option for passengers with type h on OD pair (o, d).

y−v,st,t/y
+
v,st,t : Number of transit vehicles of type v located at stop st just before (resp., just after)

timetslot t.

wi : Passenger waiting time for transit itinerary i.

opeRod,tt : Operating cost of ride-hailing vehicles starting in traffic timeslot tt on OD pair (o, d).

extRod,tt : External cost of ride-hailing vehicles starting in traffic timeslot tt on OD pair (o, d),

including environmental, public health, and safety-related cost.

tras,tt : Per-vehicle travel time on road segment s in traffic timeslot tt.

tcVs,tt : Per-vehicle travel time cost of other vehicles on road segment s in traffic timeslot tt.

extVs,tt : Per-vehicle external cost of other vehicles on road segment s during traffic timeslot tt,

including environmental, public health, and safety-related costs.

opeVs,tt : Per-vehicle operating cost for other vehicles on road segment s in traffic timeslot tt.

ratioRod,p,tt : Of all ride-hailing providers serving a passenger on OD pair (o, d) and starting

service in traffic timeslot tt, the fraction who use travel path p.

rhfareod,tt : Ride-hailing fare for OD pair (o, d) starting in traffic timeslot tt.

The direct decision variables determine the frequency of each transit line in any transit

timeslot. All other variables are not directly controlled by the transit planners. Still, they
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depend on transit timetabling and, vice versa, impact the timetabling solution. These in-

terdependencies are captured through the itinerary attractiveness variables, which impact

traffic flow assignments, travel costs, and, ultimately, the market share variables. Note that

the ride-hailing fares are defined as decision variables because they depend on travel times,

and hence on traffic congestion; however, the unit price (per unit of time) is treated as

exogenous.

4.2.3 Model Formulation

The mathematical formulation of the model is given as follows.

Minimize
∑
h∈H

∑
(o,d)∈Q

∑
i∈Iod

Demod,h × sTRi,h × tcTRi,h +
∑
v∈V

∑
t∈PT ′

∑
g∈G

OpeTRg,v × xv,g,t +

∑
tt∈T T

∑
h∈H

∑
(o,d)∈Q

Demod,h × sRod,h,tt × (tcRod,h,tt + opeRod,tt + extRod,tt) +

∑
tt∈T T

∑
s∈SNall

(opeVs,tt + extVs,tt + tcVs,tt)× V ehs,tt +

∑
h∈H

∑
(o,d)∈Q

Demod,h × sOod,h ×DCod,h (4.1)

subject to: Vehicle Availability and Consistency Constraints:

xv,g,t = 0, ∀g ∈ G, v ∈ V \ Vg, t ∈ PT ′ (4.2)∑
st∈ST

y−v,st,MinPT +
∑
g∈G

∑
t∈PT ′

ETVv,g,t ≤ Availv, ∀v ∈ VT (4.3)

Transit Vehicles Flow Balance Constraints:

y−v,st,(t+1) = y+v,st,t, ∀v ∈ VT , st ∈ ST , t ∈ PT \ {MaxPT} (4.4)

y−v,st,t +
∑
g∈Gdst,v

xv,g,D(g,t) +
∑
g∈Gdst,v

ETVv,g,D(g,t) = y+v,st,t +
∑
g∈Gost,v

xv,g,t,

∀v ∈ VT , st ∈ ST , t ∈ PT (4.5)

Demand Constraints:∑
i∈Iod

sTRi,h +
∑
tt∈T T

sRod,h,tt + sOod,h = 1, ∀(o, d) ∈ Q, h ∈ H (4.6)

AOod,h × sRod,h,tt = aRod,h,tt × sOod,h, ∀(o, d) ∈ Q, h ∈ H, tt ∈ T T (4.7)
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AOod,h × sTRi,h ≤ aTRi,h × sOod,h, ∀i ∈ Iod, (o, d) ∈ Q, h ∈ H (4.8)

Capacity Constraints:∑
(o,d)∈Q

∑
h∈H

∑
i∈Ĩe,g,t∩Iod

(Demod,h × sTRi,h ) ≤
∑
v∈V

Capv × (xv,g,t + ETVv,g,t),

∀e ∈ Eg, g ∈ G, t ∈ PT ′ (4.9)

Traffic Flow Assignment: [ratioR, tra, tcV] = fRout(s
R) (4.10)

Dynamics of the ride-hailing and public transit systems

Ride-hailing Fare: rhfare = frhfare(ratio
R, tra), (4.11)

Public Transit Waiting Time: w = fWaitPT (x) (4.12)

Generalized Travel Cost and Attractiveness Calculations:

tcR = fCostRH(ratioR, tra) (4.13)

aR = fAttrR(tcR, rhfare) (4.14)

tcTR = fCostPT (w) (4.15)

aTR = fAttrR(tcTR) (4.16)

Operating Costs and External Costs:

opeR = fOpeR(tra, ratioR) (4.17)

extR = fExtR(tra, ratioR) (4.18)

opeV = fOpeV (tra) (4.19)

extV = fExtV (tra) (4.20)

Domain of Definition:

x,y−,y+ non-negative integer (4.21)

sTR, sR, sO ≥ 0 (4.22)

w, tcTR, tcR,opeR, extR, tra, tcV, extV,opeV, ratioR, rhfare ≥ 0

(4.23)

aTR, aR ≥ 0 (4.24)
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Objective Function: The model minimizes the system-wide cost of the closed system

consisting of the public transit operator, the ride-hailing operator, all passengers (those

taking transit, ride-hailing and outside option), and all vehicles on the road network. The

first term of the objective function is the cost to transit passengers. The second term is the

transit operating cost (e.g., crew, fuel, maintenance). The third term is the ride-hailing cost,

including the cost to ride-hailing passengers, the operating cost of ride-hailing vehicles

and their external cost. The fourth term includes the time, operating and external costs

corresponding to all other vehicles on the roads. The last term is the cost borne by the

outside option passengers, who choose other travel modes.

Vehicle Availability and Consistency Constraints: Constraints (4.2) restrict service

to compatible vehicles. Constraints (4.3) enforces the number of available transit vehicles

of each type.

Transit Vehicles Flow Balance Constraints: Constraints (4.4) and (4.5) ensure flow

conservation of transit vehicles across the network, for each vehicle type. We ensure flow

balance at the first and last stop of each line—which automatically ensures flow balance at

intermediate stops.

Demand Constraints: Constraints (4.6) ensure that the market shares across all al-

ternatives (i.e., public transit itineraries, ride-hailing departure timeslots, and the outside

option) sum up to 1 for each passenger type on every OD pair. Next, we use the Sales

Based Linear Programming (SBLP) model from Gallego et al. [59] to incorporate passen-

ger choice into our model: Constraints (4.7) and (4.8), respectively, ensure that the market

share of every ride-hailing and transit alternative is proportional to its attractiveness for

every passenger type on every OD pair. Constraints (4.8) are inequalities to reflect that

the transit market share may be lower than that dictated by its attractiveness due to the

passenger-carrying restrictions of transit vehicles.

Capacity Constraints: Constraints (4.9) impose that the number of passengers travel-

ing on any edge of the public transit line cannot exceed the capacity of the corresponding
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transit vehicles.

Traffic Flow Assignment: Constraints (4.10) assign paths to each ride-hailing trip,

given the ride-hailing market share (sRod,h,tt). To this end, we use a traffic flow assignment

model, detailed in Section 4.3.2. It returns the fraction of ride-hailing vehicles on each path

(ratioRod,p,tt), the travel times (tras,tt) and the travel costs (tcVs,tt).

Dynamics of the ride-hailing and public transit systems: Constraints (4.11)-(4.20)

capture the impact of the public transit schedule on the dynamics of the ride-hailing and

public transit systems. We describe them briefly below and provide additional details in

Appendix B.1.

Ride-hailing Fare: Constraints (4.11) calculate the fare for each ride-hailing trip (rhfareod,tt)

as a function of the distance (given by ratioRod,p,tt) and the in-vehicle time (tras,tt). We as-

sume that the waiting time of ride-hailing passengers is not affected by the transit schedule

changes.

Public Transit Waiting Time: The waiting time wi of itinerary i is calculated by adding

the waiting time at the first station (as a function of transit frequency, provided by xv,g,t)

and the transfer times at the intermediate stops (time difference between the start time of

the next service and the arrival time of the current service).

Generalized Travel Cost and Attractiveness Calculations: Constraints (4.13) to (4.16)

calculate the cost and attractiveness of each transit itinerary and each ride-hailing trip,

for each passenger type. In Constraints (4.14) and (4.16), the attractiveness values of ride-

hailing (aRod,h,tt) and transit (aTRi,h ) are obtained from passengers’ utilities, expressed as linear

functions of a set of attributes that affect passengers’ choice. We denote these attribute

vectors by zzzRod,h,tt and zzzTRi,h and the corresponding vectors of linear coefficients by βββRod,h,tt

and βββTRi,h , for ride-hailing and transit respectively. In each case, the utility consists of the

following attributes: walking time, waiting time, in-vehicle travel time, trip cost, start time,
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and transport mode [88]. We have:

aRod,h,tt =exp
(
βββRod,h,tt · zRod,h,tt

)
∀(o, d) ∈ Q, h ∈ H, tt ∈ T T (4.25)

aTRi,h =exp
(
βββTRi,h · zTRi,h

)
∀i ∈ Iod, (o, d) ∈ Q, h ∈ H (4.26)

Since the ride-hailing and transit fares are the internal costs within the system, they get

canceled out when calculating the system-wide costs. Therefore, the cost to ride-hailing

passengers tcRod,h,tt and the cost to transit passengers tcTRi,h are their utility values excluding

the trip fares.

Operating Costs and External Costs: Constraints (4.17) to (4.20) compute the operating

and external costs of ride-hailing and other vehicles, as a function of travel times (tras,tt),

and the travel paths of ride-hailing vehicles (given by ratioRod,p,tt).

Domain of definition: Constraints (4.21) to (4.24) define the domain of all decision

variables.

Additional constraints on transit operations: In order to guarantee a certain level

of service for transit passengers, the transit operator may impose a minimum number of

operations via Constraints (4.27). Here, MinFreqg,t is defined as the minimum frequency

of transit line g with starting transit timeslot t. Alternatively, a minimum level of service

requirement may be enforced with a lower bound MinTotalFreqg on the total frequency

of a line g throughout the morning rush hour, via Constraints (4.28). A transit operator may

also be concerned about not changing the aggregate transit timetable too much in terms of

the total transit vehicle-miles. To this end, Constraints (4.29) and (4.30) ensure that the

aggregate schedule does not fall outside of a reasonable range given by MinTotalMiles

and MaxTotalMiles. Here, Leng is defined as the length (in miles) of transit line g. Note

that not all of these minimum level of service constraints may be relevant for a given transit

operator. Our computational experiments presented in Section 4.4 have been performed

under various combinations of Constraints (4.27)–(4.30).
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∑
v∈Vg

xv,g,t ≥MinFreqg,t, ∀g ∈ G, t ∈ PT (4.27)

∑
v∈Vg

∑
t∈PT

xv,g,t ≥MinTotalFreqg, ∀g ∈ G (4.28)

∑
g∈G

∑
v∈Vg

∑
t∈PT

Leng × xv,g,t ≥MinTotalMiles (4.29)

∑
g∈G

∑
v∈Vg

∑
t∈PT

Leng × xv,g,t ≤MaxTotalMiles (4.30)

4.3 Solution Approach

The MINLP presented in Section 4.2 optimizes public transit schedules, while capturing in-

terdependencies between transit, ride-hailing and other vehicles. The performances of these

components are interrelated due to passenger choice decisions and traffic flows. However,

solving this integrated model to optimality is complicated by three main factors: large net-

work size, large number of discrete variables, and nonlinear non-convex model structure.

First, the size of the mathematical model is extremely large for realistic problem instances;

for example, in the case study network in Section 4.4, passenger demand is sparsely dis-

tributed across over 16 million node pairs. Second, the model includes a very large number

of integer variables. Our case study network considered in Section 4.4 involves over 1

million transit passenger itinerary variables. Third, many components of our model are

highly nonlinear, and some are even non-convex. For instance, several terms in the ob-

jective function involve a product of a flow variable (e.g., number of transit passengers)

and a cost variable (e.g., transit time and travel cost)—both of which are endogenous to the

passenger choice model and resulting traffic flows. Similarly, the equations defining the dy-

namics of the system (Constraints (4.10)–(4.20)) are all nonlinear. Moreover, the use of the

Multinomial Logit (MNL) model of passenger choice results in non-convex attractiveness

calculations in equations (4.25) and (4.26). For all these reasons, direct implementation of
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this MINLP with commercial solvers typically does not even yield any feasible solution.

We thus propose a new solution approach to derive high-quality solutions in reasonable

computational times for this large-scale, mixed-integer, non-convex model. This solution

approach is outlined in Figure 4.2, detailed in the remainder of this section, and imple-

mented and evaluated in Section 4.4.

Figure 4.2: Solution approach

In this solution approach, we divide the variables into three categories:

Outer Loop Variables: strategic transit scheduling decisions (xv,g,t, y−v,st,t and y+v,st,t).

Passenger Share Variables: passenger shares on each mode (sTRi,h , sRod,h,tt, and sOod,h).

Inner Loop Variables: traffic flows (ratioRod,p,tt), transit waiting times (wi), travel

costs (tcTRi,h , tcRod,h,tt, ope
R
od,tt, ext

R
od,tt, tras,tt, tc

V
s,tt, ext

V
s,tt, ope

V
s,tt), ride-hailing fares
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(i.e., rhfareod,tt), and attractiveness of transit and ride-hailing (aTRi,h and aRod,h,tt).

In the outer loop (blue boxes in Figure 4.2), all Inner Loop Variables are fixed; we

optimize the Outer Loop Variables and the Passenger Share Variables by minimizing the

objective function (4.1) subject to constraints (4.2)-(4.9) and (4.21)-(4.22). This updates

the transit schedule, and the passenger decisions which are based on the resulting attractive-

ness of the different options. The inner loop (orange boxes in Figure 4.2) uses the resulting

schedule to estimate traffic congestion at the equilibrium. In the inner loop, all Outer Loop

Variables are fixed; we iteratively update the Inner Loop Variables and the ride-hailing

market share, until convergence—that is, until the road travel times for ride-hailing vehi-

cles and other vehicles vary by less than a pre-determined percentage from one iteration to

another. The inner loop thus captures the impact of the transit schedule on the dynamics

of the system (i.e., traffic flows, transit waiting times, travel costs, and ride-hailing fares).

Then, we proceed to the outer loop, and re-optimize the transit schedule. This process con-

tinues until the transit schedule does not change between consecutive iterations of the outer

loop.

This solution approach provides a decomposition algorithm for this large-scale MINLP,

bringing three benefits. First, by treating the Inner Loop Variables as parameters in the

outer-loop model, this transit schedule optimization sub-problem becomes a Mixed Inter

Linear Program (MILP)—which is easier to solve than the originally MINLP. Second, it

greatly reduces the size of the model by eliminating constraints (4.10)-(4.20) and (4.23)-

(4.24). Third, the non-linear constraints (4.10)-(4.20) are captured in the inner loop, which

is descriptive: by replicating the effects of the transit schedule on system dynamics, rather

than optimizing transit schedules, the inner loop can be run in reasonable computational

times for large-scale instances. Ultimately, this solution approach helps us transform the

large-scale MINLP in a way that can be easily implemented without losing the interrela-

tionships among the different components of the model.
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4.3.1 Outer Loop

We initialize the travel times on all road segments to their corresponding free-flow values

(i.e., those in the absence of congestion). Next, by treating all Inner Loop Variables as

parameters, we optimize the public transit schedule by solving the model given by Equa-

tions (4.1)-(4.9) and (4.21)-(4.22) to optimality or until a pre-determined time limit. The

algorithm terminates when two conditions have been met: 1) the outer loop optimization is

solved to 0% optimality gap, and 2) the resulting solution is in equilibrium with the inner

loop decision variable values. The latter condition is enforced by ensuring that the transit

schedules obtained in two successive outer loop iterations are identical. A key idea in this

algorithm, which accelerates its performance, is that initially, we do not attempt to solve the

outer loop problem to full optimality. Instead, we apply a runtime budget of 1 hour. This

allows the inner loop variables to come closer to their optimal values. Then, we progres-

sively increase the outer loop runtime budget (in 1 hour increments), thus bringing all the

decision variables closer to the overall optimum. This idea was found to be instrumental

in reaching overall optimality more expeditiously, tremendously cutting down the overall

runtime.

4.3.2 Inner Loop

We use a traffic assignment model to replicate traffic flows and travel times on all road

segments. Outer loop optimization calculates the ride-hailing market share on each OD

pair in each traffic timeslot. To assign ride-hailing vehicles to different travel paths across

the road network, we use a User Equilibrium Model (UEM) defined from Wardrop’s first

principle—all routes used by travelers leaving from the same origin at the same time to

the same destination have equal and minimal travel time [145]. It is formulated as follows
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[150, 105]:

Minimize
∑
tt∈T T ′

∑
s∈SNall

∫ ztts

0

tras,tt(z̃
tt
s )dz̃tts (4.31)

subject to:
∑
p∈Pod

flowtt
′

p = Dtt′

od , ∀(o, d) ∈ Q, tt′ ∈ T T ′ (4.32)

ztts =
∑

tt′∈T T ′

∑
(o,d)∈Q

∑
p∈Pod

(δtt
′,tt

p,s × flowtt
′

p ), ∀s ∈ SN all, tt ∈ T T ′

(4.33)

flowtt
′

p ≥ 0, ∀p ∈ Pod, (o, d) ∈ Q, tt′ ∈ T T ′ (4.34)

tras,tt ≥ 0, s ∈ SN all, tt ∈ T T ′ (4.35)

Here, ztts is defined as the number of vehicles entering segment s during traffic timeslot

tt. The function tras,tt (a monotonic, continuously differentiable function) represents the

travel time on road segment s in traffic timeslot tt, as a function of traffic flows ztts . Next,

flowtt
′

p is the total number of vehicles taking path p and departing in traffic timeslot tt′,

Dtt′

od is the total vehicle flow of OD pair (o, d) with departure time tt′, and δtt′,ttp,s is given by:

δtt
′,tt

p,s =


1 if the vehicles taking path p and departing in traffic timeslot tt′

enter road segment s during traffic timeslot tt

0 otherwise

Equation (4.31) applies the Wardrop principle. Constraints (4.32) ensure that, for each

OD pair, all vehicles get assigned to one of corresponding paths. Constraints (4.33) define

traffic flows on each segment in each traffic timeslot. Constraints (4.34) and (4.35) define

the domains of the variables.

In order to estimate tras,tt(z̃tts ), we use the speed-flow functions given by Schrank et al.

[115], listed in Table 4.1. They are piece-wise linear continuous functions with slopes

dependent on traffic volumes per lane and on the road type (freeway vs. arterial road).
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Table 4.1: Segment travel speed as function of traffic volume per lane

Road Type Congestion Level Traffic Volume per Lane Speed Equation

Freeway Uncongested Under 15,000 60
Medium 15,001-17,500 70-(0.9× ADT/Lane)
Heavy 17,501-20,000 78-(1.4× ADT/Lane)
Severe 20,001-25,000 96-(2.3× ADT/ Lane)

Extreme Over 25,000 76-(1.46× ADT/Lane)

Arterial Street Uncongested Under 5,500 35
Medium 5,501-7,000 33.58-(0.74× ADT/Lane)
Heavy 7,001-8,500 33.80-(0.77× ADT/Lane)
Severe 8,501-10,000 31.65-(0.51× ADT/Lane)

Extreme Over 10,000 32.57-(0.62× ADT/Lane)
Note. ADT/Lane is average daily traffic per lane, in thousands.

The UEM problem has a continuously differentiable objective function, and could thus

be solved by the method of Frank and Wolf [57]—by iteratively solving a linear program

with an approximated objective function and a line search, until convergence. One ma-

jor challenge is that this technique requires significant customization and large computer

memory to store path-flows. As an alternative, we propose a faster numerical approach, by

approximating the objective function with polynomials—using the least-squares method.

A polynomial of order 2 was found to strike a good balance between accuracy and sim-

plicity. We obtained R2 values of 99.99% (3 parameters fitted to 30,000 data points) for

freeways and 99.88% for arterial streets (3 parameters fitted to 15,000 data points). Figure

4.3 demonstrates the accuracy of our approximation approach by plotting the original ob-

jective function and the fitted quadratic approximation together for freeways (Figure 4.3a)

and arterial streets (Figure 4.3b), each for a one-lane segment of 1 mile length.

Ultimately, this approach replaces the traffic flow assignment model by the following

problem:

Minimize
∑

s∈SNall

LEs(αsz
tt
s × ztts + βsz

tt
s + γs) (4.36)

subject to: Constraints (4.32)− (4.35), (4.37)

where αs, βs, γs are fitted parameters for road segment s, determined by the road type and

126



(a) Freeways (b) Arterial Street

Figure 4.3: Quadratic approximation of the UEM objective function

number of lanes of that road segment. This approximate flow assignment model was solved

to 0% optimality gap in 10 seconds in our largest case study—thus enabling tractability

of the overall model. Upon solving the traffic assignment problem, we update the travel

time values on each segment for each traffic timeslot, and update the Inner Loop Variables

accordingly.

4.4 Case Study

We use the Manhattan road network and the New York Subway system as a case study to

demonstrate the effectiveness of our model and solution approach.

4.4.1 Experimental Setup

We consider the road network of Manhattan, consisting of 4,092 nodes and 9,453 road

segments. We are interested in optimizing the transit schedules during the 6:30–9:30 am

rush hours—our optimization horizon. To capture boundary effects immediately before and

after the rush hours, our modeling horizon is set to 5:30–10:30 am. We divide this five-hour

modeling horizon into 20 15-minutes traffic timeslots. We assume that all other vehicles

except ride-hailing vehicles follow their original travel paths; so our traffic assignment
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model only captures ride-hailing demand. This assumption can be easily relaxed, if one

has access to accurate OD-level data for other vehicles. All data on road traffic are taken

from Donovan and Work [49], Bertsimas et al. [24] and Moss et al. [101]. The procedures

used for estimating passenger demand of each OD pair and the number of other vehicles

on each road segment in each traffic timeslot are detailed in Appendix B.2.

We obtain all relevant information on each subway line, including length, stops, actual

schedule, passenger-carrying capacity, vehicle compatibility, vehicle availability, and fare,

from the MTA [102]. We divide the five-hour modeling horizon into 20 15-minutes transit

timeslots. MTA buses are not included in the model but considered as part of the outside

option.

We tune the utility coefficients to generate the attractiveness values (AOod,h, aTRi,h and

aRod,h,tt) for each transport mode. To this end, we use an iterative procedure to match the

actual market share of each transportation mode in New York City reported in Trottenberg

[138]. The calibration details are reported in Appendix B.3. Given the blurring of the

boundaries between ride-hailing model and traditional taxicabs, we combine ride-hailing

and taxis into the same category (as done in New York City Mobility report [138]).

We use six passenger types in our computational experiments, corresponding to a com-

bination of one of the two trip purposes (price-sensitive vs. time-sensitive passengers) and

one of the three ideal departure time preferences (7 am, 8 am and 9 am). Passenger type

definitions are detailed in Appendix B.4. All other parameters are described in Appendix

B.5.

Note that this computational study focuses predominantly on Manhattan, but we take

precautions to capture all relevant interdependencies with other boroughs. Specifically, we

optimize the entire transit schedule corresponding to all subway lines that are at least partly

in Manhattan. Also, we include passenger demand with part of the trip (origin, destination,

candidate travel paths, or candidate transit itineraries) possibly in Manhattan. Finally, we

model the entire road network of all five boroughs of New York City but we model the
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road congestion effects of transit scheduling changes only in Manhattan—for the other

boroughs, we fix the congestion levels.

4.4.2 Computational Results

We now demonstrate the benefits of our modeling and solution approach across multiple

demand distributions and different assumptions regarding the required minimum level of

transit service.

Demand Distribution Approaches: Our first, and most straightforward, approach (we

name it “Default”) for calculating the geographical distribution of passenger demand as-

sumes that it is the same as the distribution of taxi trips. Although simple, this distribu-

tion may be biased for two reasons. First, bridges and tunnels connecting Manhattan to

other boroughs have tolls which are included in ride-hailing fare, so the demand distri-

bution estimated from taxi data may be undercounting inter-borough trip demand. In our

second approach (we name it “Borough”), we drastically compensate for this effect by

increasing demand of all inter-borough ODs by 50% and decreasing the demand for all

intra-borough ODs by a fixed percentage, while keeping the total network-wide demand

constant. Second, the New York City subway fare does not depend on trip distance but

the taxi/ride-hailing fare does, so the demand distribution estimated from taxi data may be

undercounting longer-distance trips. In our third approach (we name it “Distance”), we

use another drastic compensation scheme by increasing the demand for the long-distance

ODs by 50% and decreasing that for the remaining ODs by 50% (we define long-distance

and short-distance OD pairs based on their shortest path on the road network, so that total

demand is equal among the two groups). The goal is to test the robustness of our findings

to the underlying demand distribution.

Transit Service Level Scenarios: As mentioned in Section 4.2.3, different transit oper-

ators may have different preferences regarding the minimum required transit service level

and/or the allowable deviation from the existing schedule. So, we evaluate our model and
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solution algorithm under three scenarios. All three scenarios enforce Constraints (4.27)

with the minimum frequency MinFreg,t set to 1 for all transit lines and all transit times-

lots. The first scenario (we name it “Miles”) also enforces Constraints (4.29) and (4.30),

so that the transit vehicle-miles do not deviate from the current ones by more than 5%. The

second scenario (we name it “Frequency”) enforces Constraints (4.28) instead of Con-

straints (4.29) and (4.30), so that the total frequency across the rush hours does not drop

more than 25% below the current frequency for any transit line. The third scenario (we

name it “Neither”) imposes none of these constraints beyond Constraints (4.27).

Results: For each of the nine demand and transit level scenario combinations, the total

computational time lies between 8 and 15 hours. These runtimes are consistent with the

strategic transit planning decisions considered in our modeling framework.

Table 4.2 summarize the main practical findings from this section. Column 4 of the

table lists the reduction in the annualized system-wide cost (in $ million) in the morning

rush hours resulting from our approach when compared with the actual transit schedule.

The next four columns break it down into four categories: passengers, service providers,

other vehicles, and emissions costs (the only type of external cost considered in our com-

putational experiments). Positive (resp., negative) values indicate decrease (resp., increase)

in costs. Figure 4.4 shows this information graphically.

Table 4.2: Breakdown of the annualized cost reductions (in USD $M) across nine scenarios

Scen. Comb. Dem. Distr. Service Level Total To Passengers To Operators To Other Veh. Emissions

S1 Default Miles 408.4 -5.6 414.0 -3.0 3.1
S2 Default Frequency 1,275.3 251.3 1,024.0 -3.2 1.8
S3 Default Neither 1,756.1 307.9 1,453.4 -6.9 3.3
S4 Borough Miles 329.2 276.5 56.8 1.7 -5.8
S5 Borough Frequency 852.2 347.5 509.9 0.9 -6.1
S6 Borough Neither 1,720.5 555.9 1,166.7 -1.7 -0.4
S7 Distance Miles 564.3 292.9 272.2 -0.7 -0.2
S8 Distance Frequency 1,092.4 370.9 723.5 -1.5 -0.5
S9 Distance Neither 1,617.0 458.8 1,165.6 -5.3 -2.2
Note. Scen. Comb.: Scenario Combination, Dem. Distr.: Demand Distribution, Veh.: Vehicles.

Note that, irrespective of demand distribution and service level scenario, the optimized

transit schedule leads to a significant system-wide cost reduction—ranging from $329.2
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Figure 4.4: Breakdown of annualized cost reduction by category

M/year to $1,756.1 M/year. A major driver of this cost reduction is a considerable reduc-

tion in cost to the passengers. In S1, the passenger cost remains essentially unchanged (a

∼0.01% change); in the other eight scenario combinations, the passenger cost reduction

ranges from $251.3 M/year $555.9 M/year. Another significant driver of the cost reduction

is the reduction in the cost to the operators (transit and ride-hailing)—ranging from $56.8

M/year to $1,453.4 M/year. Finally, the costs to other vehicles and the emissions costs

both remain essentially unchanged—with an average decrease of -$2.2 M/year and -$0.8

M/year, respectively. Note that this should not be misconstrued as equivalent to saying that

other vehicles’ costs and emission costs can be ignored in the optimization. This is a subtle

but important point, highlighted in Section 4.4.3.

Additional details of the solutions are provided in Appendix B.6 (Tables B.5-B.4). In

particular, these results highlight that our solutions do not significantly modify each mode’s

market shares. On average, the transit market share decreases by only 1.4% from the actual

to the optimal schedule, and the market shares of ride-hailing and of the outside option

increase +0.16% and +1.24%, respectively. Stated differently, our approach achieves a
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significant cost reduction for multiple stakeholders without much change in the aggregate

mode shares.

Ultimately, our solution leads to consistently and significantly large reductions in the

system-wide costs (by 0.4% − 2.5%), the costs to passengers (by 0.0% − 0.9%) and the

costs to operators (by 1.6% − 40.85%), while keeping the costs to the other vehicles and

the emissions costs unchanged. This means that adapting transit frequencies and schedules

can result in win-win-win outcomes for the passengers, service-operators and the urban

transportation system as a whole—without causing additional harm to the environment or

to the other vehicles on the road.

In the remainder of this chapter, we focus on the distance-based demand adjustment

(scenario combinations S7, S8 and S9). However, the main takeaways remain essentially

unchanged when similar analyses are repeated under other scenario combinations.

4.4.3 Benefits of Our Comprehensive Modeling Approach

We now evaluate the benefits of explicitly modeling passengers’ decisions and road traffic

congestion in the transit schedule optimization. To do so, we create two baselines. The first

one (Ignore Congestion) ignores the effects on traffic congestion, by fixing the road travel

time on each segment to that under the actual schedule. The second one (Ignore Passenger

Choice) ignores passenger choice considerations in the outer loop optimization, by fixing

the transit market share in each OD market to that under the actual schedule. We evaluate

each baseline by running our full solution approach after fixing the transit schedule—so

the baselines ignore passenger choice or road congestion in the schedule optimization, but

the schedules are assessed under both passenger choice and road congestion.The results

(in scenario combination S9) are reported in Table 4.3, where the numbers in parentheses

indicate the relative change, as compared to the Actual schedule.

The optimal schedule reduces total system-wide costs by approximately $4.4 million

per day. Table 4.3 shows that 7% and 31% of this reduction would be washed away when
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Table 4.3: Benefits assessment of individual components of our optimization model

Actual Ignore Passenger Choice Ignore Congestion Optimized Schedule

Total Cost ($) 175,497,569 172,439,923 171,358,632 171,067,522
(0.00%) (-1.74%) (-2.36%) (-2.52%)

Total Cost to Passengers ($) 141,685,551 140,289,171 141,200,587 140,428,436
(0.00%) (-0.99%) (-0.34%) (-0.89%)

Cost to Transit Passengers ($)
10,975,221 9,435,050 8,047,640 9,761,367

(0.00%) (-14.03%) (-26.67%) (-11.06%)

Cost to Ride-hailing Passengers ($)
11,141,282 11,568,298 11,533,091 11,731,933

(0.00%) (3.83%) (3.52%) (5.30%)

Cost to Outside Option Passengers ($)
119,569,047 119,285,823 121,619,856 118,935,136

(0.00%) (-0.24%) (1.72%) (-0.53%)

Total Cost to Transit and Ride-hailing Operators ($) 8,833,828 7,157,791 5,166,537 5,640,334
(0.00%) (-18.97%) (-41.51%) (-36.15%)

Cost to Transit Operator ($)
7,251,348 5,536,175 3,549,253 4,001,311
(0.00%) (-23.56%) (-51.05%) (-44.82%)

Cost to Ride-hailing Operator ($)
1,582,480 1,621,616 1,617,284 1,639,023
(0.00%) (2.47%) (2.20%) (3.57%)

Total Cost to Other Vehicles ($) 24,528,097 24,538,926 24,537,879 24,542,732
(0.00%) (0.04%) (0.04%) (0.06%)

Time Cost to Other Vehicles ($)
22,932,078 22,933,229 22,933,178 22,933,009

(0.00%) (0.01%) (0.00%) (0.00%)

Operating Cost to Other Vehicles ($)
1,596,019 1,605,697 1,604,701 1,609,723
(0.00%) (0.61%) (0.54%) (0.86%)

Total Emission Cost ($) 450,092 454,036 453,629 456,020
(0.00%) (0.88%) (0.79%) (1.32%)

Cost of Emissions from Ride-hailing Vehicles ($)
50,278 51,797 51,640 52,773
(0.00%) (3.02%) (2.71%) (4.96%)

Cost of Emissions from Other Vehicles ($)
399,814 402,239 401,989 403,247
(0.00%) (0.61%) (0.54%) (0.86%)

Market Shares
Transit Market Share 34.84% 34.10% 30.04% 32.05%
Ride-hailing Market Share 5.11% 5.37% 5.34% 5.46%
Outside Option Market Share 60.05% 60.53% 64.61% 62.49%

ignoring congestion and passenger choice, respectively. This underscores the value of ex-

plicitly accounting for congestion and passenger choice in our modeling and computational

framework.

Diving further into the results in Table 4.3, note that the biggest cost difference be-

tween Ignore Passenger Choice and Optimized Schedule pertains to the transit operator.

By ignoring the alternative transportation modes available to the passengers, we force the

optimization model to accommodate a fixed number of passengers in each OD pair. This

leads to a significantly suboptimal transit schedule, thus causing unnecessary increase in

transit operating costs (∼27%)—much larger than the corresponding increase in transit

market share (∼6%).

The situation under Ignore Congestion is completely different but equally interesting.

In that baseline, many more passengers switch to ride-hailing (since congestion costs are
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underestimated), enabling the transit operator to reduce transit service to an even lower

level than in the optimal solution. This lower level of transit service, in actuality, just pushes

more passengers to the outside option, increasing the total cost to outside option passengers

by $2.7 million per day. This is the biggest factor contributing to the suboptimality of the

schedule obtained under Ignore Congestion.

4.4.4 Detailed Comparison with Actual Schedule

We now compare the optimized schedule to the actual schedule (in scenario combination

S8) to identify the main improvements provided by our schedule. We report the service

frequencies in Figure 4.5 for operations starting in the rush hours. In this figure, we cluster

the lines which share the same primary trunk line, and separate south-bound vs. north-

bound operations.

Figure 4.5: Frequency by line

Figure 4.5 suggests that service frequencies are reduced on most lines. But there are

two notable exceptions: frequency increases on line “7” South-bound and on lines “ACE”
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North-bound—two lines originating in Queens and then passing through Manhattan. This

is likely an effect of the strong morning demand from Queens toward Manhattan—many

commuters reside in Queens and work in Manhattan and other boroughs. This also stems

from the fact that ride-hailing services are not particularly attractive to travel from Queens

to Manhattan, due to traffic congestion on the corresponding paths, long travel distances

and high fares. In summary, the optimized schedule reduces service frequency on many

lines but increases on others—thus spatially reconfiguring transit supply to match passenger

demand, given ride-hailing alternatives and traffic congestion patterns.

Figure 4.6: Frequency by time slot

Next, Figure 4.6 plots total service frequencies across all transit lines, by line departure

time. The main observation is that the temporal patterns are consistent between the actual

and optimal schedules. In the actual schedule, the frequency is distributed quite evenly

between 6 : 30 and 9 : 30 with a peak around 8:00-8:15 corresponding to 35% higher fre-

quency than in the lowest-frequency timeslot. The same pattern holds under our optimized

schedule with a peak around 8:00-8:15 corresponding to 38% higher frequency than in the

135



lowest-frequency timeslot. Moreover, both schedules have a slightly higher frequency at

the end of the rush hour than at the start.

Last, we compare the passenger choice results under the optimized and actual tran-

sit schedules as shown in Figure 4.7 (in scenario combination S7). We classify the OD

pairs along two dimensions: travel distance and congestion level. We divide OD pairs into

long-distance and short-distance trips based on their shortest path on the road network, so

that total demand is equal among the two groups. Similarly, we divide the OD pairs into

“Congested” (top 50%) and “Less Congested” (bottom 50%) based on the average vehicle-

to-capacity ratios across all travel paths connecting the OD pair.

Figure 4.7: Passenger choice comparison between actual schedule and optimal schedule

Note that the number of transit passengers increases in “Long” markets and slightly

decreases in “Short” markets. Thus, the optimal transit schedule encourages passengers

to take transit for long-distance trips and slightly discourages them from taking transit for

short-distance trips. At the same time, the number of short-distance passengers taking

ride-hailing increases significantly. Among the longer-distance markets, the number of
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ride-hailing passengers decreases slightly in congested markets, and increases slightly in

less congested markets. Thus our model, which explicitly captures congestion, encourages

more passengers to take ride-hailing in shorter markets, while also discouraging them from

taking ride-hailing in the longer-distance and congested markets.

In summary, our model results in a better matching between passengers and suitable

travel modes. For example, public transit is especially suitable for the longer OD markets

in New York City where the subway system provides a high level of access and cheap

fares. In contrast, ride-hailing is more attractive in the shorter and less congested markets,

allowing passengers to avoid the comparatively long transit access and egress times at a

more moderate price premium.

4.5 Robustness Tests

The results presented in Section 4.4 relied on a number of assumptions. An important one

is that we only considered the ride-hailing vehicle-miles that are traveled with passengers—

thus ignoring empty vehicle driving between trips and underestimating congestion induced

by ride-hailing. Another assumption is that the transit fare structure remains the same

as that currently in place in New York City. We now relax these two assumptions by

investigating the impact of empty vehicle driving and different transit fare structures on

the optimal transit schedule. We also establish the robustness of our findings, by showing

that the main benefits identified in Section 4.4 hold even if some system complexities are

ignored when optimizing the public transit schedule.

4.5.1 Empty Ride-hailing Vehicles

Following passenger drop offs, ride-hailing vehicle may drive empty—without passengers—

while waiting for the next trip request and driving toward the next pickup location. Henao

and Marshall [68] estimated that empty vehicle driving increases average vehicle-miles
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traveled in ride-sharing systems by 69%. Obviously, there is significant uncertainty regard-

ing the exact paths along which empty vehicle driving occurs—depending on driver deci-

sions, drop-off locations, traffic conditions, etc. We therefore use an approximate method

(detailed in Appendix B.7) to reconstruct the paths of empty ride-hailing vehicles, while

ensuring that empty driving amounts to 69% of the actual distance driven with passengers.

This approach should not be overly interpreted at the disaggregate level (e.g., on each road

segment, at each node, in each traffic timeslot). Still, by accounting for the aggregate effects

of empty driving, this algorithm helps paint a more accurate picture of overall congestion

caused by the ride-hailing vehicles.

Table 4.4 lists the results with and without empty driving (in scenario combination S9).

The second column reports the results from Section 4.4, obtained and evaluated without

empty driving. The next column uses the actual schedule and evaluates it with empty

vehicle driving. The next one uses the transit schedule obtained without empty vehicle

driving (as in column 2) but evaluates it with empty driving—by recomputing the traffic

assignment accordingly. The last column re-optimizes the transit schedule and evaluates it

while explicitly accounting for empty vehicle driving.

Table 4.4: Comparison of results with and without empty driving

Without Empty Driving
With Empty Driving

Actual Optimized Schedule Re-optimized Schedule

Total Cost ($) 171,067,522 175,497,616 172,258,760 172,255,435

Total Cost to Passengers ($) 140,428,436 141,685,530 141,412,110 141,402,620
Cost to Transit Passengers ($) 9,761,367 10,975,182 9,838,755 9,869,186
Cost to Ride-hailing Passengers ($) 11,731,933 11,141,321 11,206,571 11,206,232
Cost to Outside Option Passengers ($) 118,935,136 119,569,027 120,366,784 120,327,202

Total Cost to Transit and Ride-hailing Operators ($) 5,640,334 8,833,835 5,655,812 5,662,031
Cost to Transit Operator ($) 4,001,311 7,251,349 4,001,311 4,007,675
Cost to Ride-hailing Operator ($) 1,639,023 1,596,020 1,654,501 1,654,356

Total Cost to Other Vehicles ($) 24,542,732 24,528,157 24,710,287 24,710,241
Time Cost to Other Vehicles ($) 22,933,009 22,932,138 22,970,595 22,970,572
Operating Cost to Other Vehicles ($) 1,609,723 1,596,020 1,739,692 1,739,669

Total Emission Cost ($) 456,020 450,093 480,551 480,543
Cost of Emissions from Ride-hailing Vehicles ($) 52,773 50,278 44,745 44,743
Cost of Emissions from Other Vehicles ($) 403,247 399,815 435,806 435,800

Market Shares
Transit Market Share 32.05% 34.84% 32.30% 32.34%
Ride-hailing Market Share 5.46% 5.11% 5.33% 5.33%
Outside Option Market Share 62.49% 60.05% 62.37% 62.33%

The results show that empty driving, evaluated using our approximate approach, leads
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to a daily cost increase of around $1.2 M. That is partly due to the additional $170, 000 of

cost to other vehicles due to increased traffic congestion. In addition, this extra congestion

lowers the ride-hailing market share from 5.46% to 5.33%. This effect results in a signif-

icant increase in the cost to passengers (by ∼ $1 M per day), primarily driven by a large

increase in the costs to the passengers displaced from ride-hailing to the outside option.

More importantly, the cost values are similar in the last two columns of the table. So

even transit schedules optimized without considering empty driving end up being close to

optimal in the presence of empty driving. Also, when we compare the Actual and Opti-

mized Schedule results, the main takeaways from Section 4.4 still hold: the system-wide

costs decrease significantly (by $1,182.18 M/year in this case) and this improvement is

driven primarily by a cost reduction to the passengers ($99.80 M/year) and to the operators

($1,159.58 M/year). These results establish the robustness of our modeling and computa-

tional approach, showing that our optimized schedule provides win-win-win outcome for

passengers, operators and the system as a whole even when failing to account for some real-

world complexities (e.g., additional congestion caused by empty vehicle driving, here).

4.5.2 Fare Structures

We now relax the assumption that transit fares follow the current structure in New York

City—a flat $2.75 per trip. First, we vary the public transit fare with trip length (Trip-

Length Based Fare)—a common practice in many cities. Specifically, we set the fare to

$2 for trips of 4 stops or less, $4 for trips of 5 − 10 stops, and $6 for trips of more than

10 stops. Second, we consider an extreme scenario where public transit is offered at no

charge (Free Transit)—as currently experimented in a few cities worldwide (e.g., Chapel

Hill, Dunkirk, Tallinn). The results are reported in Table 4.5 (in scenario combination

S9), using the same structure as in Table 4.4. For each transit fare structure, we report the

costs using (i) the actual schedule evaluated under the new fare structure, (ii) the optimal

schedule corresponding to a flat $2.75 fare evaluated under the new fare structure, and (iii)
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the optimal schedule obtained and evaluated under the new fare structure.

Table 4.5: Comparison of results under different fare structures

Without Fare Change
Trip-Length Based Fare Free Transit

Actual Optimized Re-optimized Actual Optimized Re-optimized

Total Cost ($) 171,067,522 175,618,653 171,060,431 170,986,099 175,454,936 170,725,850 170,701,059

Total Cost to Passengers ($) 140,428,436 141,801,687 140,449,957 140,397,801 141,648,421 140,123,509 140,079,834
Cost to Transit Passengers ($) 9,761,367 10,918,078 9,632,337 9,571,563 11,267,431 9,814,530 9,865,998
Cost to Ride-hailing Passengers ($) 11,731,933 11,170,627 11,542,211 11,538,664 11,070,577 11,460,147 11,462,579
Cost to Outside Option Passengers ($) 118,935,136 119,712,982 119,275,409 119,287,574 119,310,413 118,848,832 118,751,257

Total Cost to Transit and Ride-hailing Operators ($) 5,640,334 8,837,574 5,618,251 5,596,268 8,830,009 5,612,452 5,631,235
Cost to Transit Operator ($) 4,001,311 7,251,349 4,001,311 3,979,437 7,251,349 4,001,311 4,020,003
Cost to Ride-hailing Operator ($) 1,639,023 1,586,225 1,616,940 1,616,831 1,578,660 1,611,141 1,611,232

Total Cost to Other Vehicles ($) 24,542,732 24,528,926 24,538,401 24,538,332 24,526,764 24,536,718 24,536,801
Time Cost to Other Vehicles ($) 22,933,009 22,932,126 22,933,300 22,933,301 22,931,842 22,933,051 22,933,078
Operating Cost to Other Vehicles ($) 1,609,723 1,596,799 1,605,101 1,605,031 1,594,922 1,603,667 1,603,723

Total Emission Cost ($) 456,020 450,465 453,822 453,697 449,742 453,170 453,188
Cost of Emissions from Ride-hailing Vehicles ($) 52,773 50,455 51,732 51,625 50,203 51,440 51,444
Cost of Emissions from Other Vehicles ($) 403,247 400,010 402,090 402,072 399,540 401,730 401,744

Market Shares
Transit Market Share 32.05% 34.74% 31.57% 31.49% 35.74% 32.32% 32.38%
Ride-hailing Market Share 5.46% 5.13% 5.35% 5.35% 5.06% 5.30% 5.30%
Outside Option Market Share 62.49% 60.13% 63.09% 63.16% 59.20% 62.38% 62.32%

First, the comparison of the Without Fare Change column with both the Optimized

columns shows that the changes are as expected. The trip-length based fare leads to a slight

reduction in transit market share (by 0.5%) as the new structure induces a slightly cheaper

fare on short trips, but a significantly more expensive fare on longer trips. Short-distance

passengers get displaced from ride-hailing to transit, causing a tiny reduction (0.1%) in

ride-hailing market share—and resulting in lower congestion and lower costs related to

ride-hailing and emissions. But many more longer-distance passengers get displaced from

transit to the outside option, causing a more significant increase (0.6%) in the outside option

market share—and resulting in higher costs to other vehicles. These two effects balance

out and lead to the overall costs staying essentially unchanged. This fare structure change

also leads to an increase in transit revenue of $436 M/year.

A similar comparison shows that, as expected, Free Transit increases the transit market

share at the expense of ride-hailing and outside option. This leads to small reductions in all

four cost categories: cost to passengers, operators, and other vehicles, as well as emission

cost, summing to a total reduction of $125 million/year. Obviously, this comes at the

expense of a significant reduction in transit revenues, of the order of $1,710 million/year.

Most importantly, the comparison of the Actual and Optimized schedules under both
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fare structures shows the robustness of our approach. Indeed, the Optimized schedule leads

to a significantly lower total system-wide cost (by $4.6–4.7 M/day) than the Actual sched-

ule, driven by lower costs to passengers (by $1.4–1.5 M/day) and costs to operators (by

$3.2 M/day). This confirms that even if the transit fare structure changes drastically af-

ter we optimized the transit schedules, the same win-win-win outcomes can be expected

relative to the existing transit schedule.

4.6 Summary

The increasing availability of on-demand transportation options creates opportunities to

enhance urban mobility, but also contributes to urban planning challenges—including de-

clining public transit ridership and increasing traffic congestion. This research proposes

to redesign public transit schedules to address these challenges. To this end, we have de-

veloped an integrated modeling framework that optimizes public transit frequencies and

timetables, while capturing passengers’ endogenous mode choices under ride-hailing com-

petition and road congestion. This problem is formulated as a Mixed Integer Nonlinear

Program (MINLP). To solve it, we have developed a bi-level solution algorithm that itera-

tively optimizes public transit schedules and estimates passengers’ mode choices and traffic

congestion, until convergence.

Case study results in New York City suggest that optimized transit schedules can reduce

daily system-wide transportation costs by millions of dollars. Importantly, this cost reduc-

tion is shared by urban transportation stakeholders—resulting in win-win-win outcomes

for passengers, transportation service providers, and the system as a whole. These benefits

are primarily achieved by re-allocating public transit resources away from OD pairs that

are well served by alternative transportation modes (e.g., short trips on mildly congested

roadways) toward OD pairs where public transit has a stronger edge over road transporta-

tion (e.g., longer trips on more congested roadways). Ultimately, these findings suggest
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that public transit and ride-hailing can co-exist and provide complementary services in a

way that enhances mobility across the urban ecosystem.
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Chapter 5

Conclusions and Future Directions

In this thesis, we develop and solve optimization models for transportation planning incor-

porating the uncertainty in supply and demand faced by airline industry and urban trans-

portation systems. In this chapter, we conclude with a detailed summary of the contribu-

tions and future research directions.

5.1 Chapter 2: Modeling Crew Itineraries and Delays in

the National Air Transportation System

This chapter explains the complex reality of crew scheduling, and provides an inside peak

at the techniques used by airlines to absorb system-wide delay propagation. It achieves this

by developing optimization and estimation methods that are shown to successfully solve the

inverse of one of the most challenging integer programming problems, for airline networks

that are among the largest in the world.

From a methodological standpoint, for the first time, the inverse of the robust crew

pairing generation problem is presented, formulated and solved in order to gain insights

into the extent of robustness of real-world airline scheduling practices. The problem is

formulated as one of learning the parameters of the robust optimization objective function
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using real-world airline crew scheduling samples. A heuristic solution approach is devel-

oped and implemented. It involves solving the forward problem repeatedly to minimize a

similarity measure between the solution of the robust crew pairing problem and the actual

airline crew schedule samples by identifying the optimal set of objective function parame-

ters. The forward problem minimizes the sum of planned crew cost and the penalty costs

which penalize the crew pairings for six different features that make them vulnerable to the

propagation of delays and disruptions. A sequence of exact methods and heuristic ideas is

used to solve this robust crew pairing problem to near-optimality. This allows the overall

parameter estimation problem to be solved in a reasonable amount of time.

From a practical standpoint, accurate estimation of crew delays is critical for an overall

understanding of aviation system performance and to inform government policy and airline

carrier decisions. This chapter demonstrates that sophisticated crew scheduling practices

allow airlines to avoid 60% to 80% of crew-propagated delays. Furthermore, we find that

the crew pairings estimated using four different airline networks perform similar to each

other, and much better than the deterministic crew pairing solutions, in terms of their close-

ness to the actual crew schedules, even when the estimation and evaluation is not conducted

on the same network. This suggests that the estimated parameters and the overall estima-

tion approach are relatively stable in the face of changes in data availability. Finally, this

research demonstrates that the ratio of the penalty costs (representing the costs of the crew-

propagated delays and disruptions) and the crew salary costs consistently lies between 0.5%

and 4% providing a measure of the relative importance placed by the airlines on planned

costs versus the costs of ensuring robustness to disruptions.

In addition to these contributions, this research makes the estimated crew pairing solu-

tions available for further research and analysis. We have made this entire model calibration

code as well as the resulting calibrated crew pairing solutions publicly available for future

research. These estimated crew pairing solutions are useful to gauge the extent of delays

and disruptions that propagate across the airline networks through crew connections. While
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these crew pairing estimates do give a starting point to estimate the crew-propagated de-

lays and disruptions, the important next step toward accurately estimating historical delay

propagation is to develop a similar understanding of the crew recovery strategies used by

the airlines in the real world. Once we have access to a historical sample of actual crew

recovery actions, a framework similar to the one developed in this chapter could be used to

learn the airline crew recovery optimization process as well. This will be a valuable next

step in this research stream.

5.2 Chapter 3: Airline Timetable Development and Fleet

Assignment Incorporating Passenger Choice

This chapter optimizes the airline timetable by explicitly capturing the endogeneity of fleet

assignment decisions and passenger booking decisions. It achieves this by developing a

mixed-integer programming model and a multi-phase solution framework that are shown

to successfully optimize airline timetables by integrating a model of passenger choice that

approximately reflects the airline revenue management practices.

From a methodological standpoint, we incorporate a sales-based linear programming

framework to accurately capture the itinerary-level demand substitution effects into a com-

prehensive timetable development and fleet assignment optimization model. Specifically,

passenger choice is captured by a discrete-choice Generalized Attraction Model, defined

in the constraint requiring the market share of each itinerary-fare class combination to be

proportional to its attractiveness. This constraint embeds a linearized version of a discrete-

choice model of passenger booking decisions. To our knowledge, ours is the first research

study to capture an airline’s comprehensive timetable development problem under passen-

ger choice. Also, we design an effective multi-phase solution approach to solve this large-

scale mixed-integer linear programming problem. When combined with several variable-

fixing and symmetry-inducing accelerated heuristics, we can achieve high quality solutions
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within reasonable computational times by narrowing down the flight’s departure time range

step-by-step.

From a practical standpoint, we use a case study from a major hub-and-spoke airline

carrier to demonstrate the benefits of our approach. When compared to previous methods

that only consider incremental changes to existing timetables and typically ignore passen-

ger choice, our approach results in between 15% and 40% profit improvements. Also, our

computational results for a real-world airline merger case study show that this combina-

tion can lead to 10% additional profits by jointly re-optimizing the timetables and fleet

assignments.

In future research, our framework can be extended to integrate other airline planning

considerations such as route development, aircraft maintenance routing, and crew schedul-

ing. In addition, even though our accelerated heuristic strategies considerably improve the

computational performance, an optimality gap may still exist, and very large airline net-

works (such as those of the mega-carriers created by the mergers of the major U.S. carriers

in the last decade) may still be impossible to solve within acceptable computational run-

times. This motivates further research into even faster heuristics or exact methods to handle

these extremely large problem instances.

5.3 Chapter 4: Transit Planning Optimization under Ride-

hailing Competition and Traffic Congestion

This chapter develops an original integrated model that optimizes transit frequencies and

timetables under endogenous passenger mode choice shaped by ride-hailing service offer-

ings and road traffic congestion. The problem is formulated as a mixed-integer nonlinear

optimization model, and solved using a new bi-level solution algorithm that iteratively opti-

mizes public transit schedules and estimates passenger mode choices and traffic congestion,

until convergence.
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From a methodological standpoint, we contribute a new highly nonlinear model as well

as a bi-level solution approach to solve it in a reasonable computational time. The solution

approach includes two interconnected procedures. An outer loop optimizes public transit

schedules, given travelers’ mode choices and estimates of traffic congestion on road net-

works. Given a transit schedule, an inner loop leverages a user-equilibrium traffic flow

assignment model to replicate the paths of ride-hailing vehicles and update traffic conges-

tion levels by fitting a high-resolution polynomial curve to data-driven estimates of travel

times. The proposed approach results in win-win-win outcomes for passengers, transporta-

tion providers, and the urban transportation system as a whole for the computational exper-

iments with New York City datasets.

From a practical standpoint, this research is potentially relevant for many cities world-

wide that are struggling to respond to the interrelated challenges of declining public transit

ridership and increasing traffic congestion — driven, in part, by the increasing popularity

of ride-hailing. A few cities (e.g., Seattle, Houston) have managed to successfully revamp

their public transit systems in this environment. However, there is limited academic re-

search providing blueprints on how to revise transit networks to meet changing demand

patterns in the new era where travelers’ behaviors are shaped by public transit offerings,

ride-hailing offerings, and traffic congestion. This chapter addresses this gap by matching

the travelers with suitable transportation options. Ultimately, our findings suggest that pub-

lic transit and ride-hailing can co-exist and provide complementary services in a way that

enhances mobility across the urban transportation ecosystem.

In future research, our framework can be extended to integrate other transit planning

considerations such as network design, line planning or rolling stock scheduling. In addi-

tion, under our current framework, the very large networks — such as the combined subway

and bus system for the entire New York City — may still be difficult to solve within ac-

ceptable computational times. This motivates further research to effectively handle these

extremely large problem instances.
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Appendix A

Supporting Material for Chapter 2

A.1 Two-step Approach in Solving the Pricing Problem to

Optimality

This appendix details the two-step approach used to solve the pricing problem to optimality.

For the pricing problem, the objective is to minimize the reduced cost of the chosen

pairing. The reduced cost is equal to the objective function coefficient of the chosen pair-

ing minus the sum of the dual variables corresponding to all flights included in this pairing.

Irnich and Desaulniers [72] frame this problem as an SPPRC and utilize a dynamic pro-

gramming approach to solve it. The core idea is to build paths in a flight network by

extending them in all feasible directions, and to identify those paths that represent feasi-

ble crew pairings with negative reduced costs. The efficiency of this approach depends on

being able to identify and eliminate paths such that these paths themselves and all their

extensions are guaranteed to be sub-optimal. These nonuseful paths are discarded by us-

ing a dominance subalgorithm based on a set of dominance rules. However, the standard

dominance algorithm is too slow for the computational requirements for our large-scale

networks. To accelerate the dominance algorithm, we tested different variations of the

dominance rules. We found that if we remove the rule that requires both the dominant and
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dominated paths to have the same crew base (Algorithm B), the speed of the dominance

step significantly increases. However, this simplification risks eliminating some paths that

could have negative reduced costs, and hence Algorithm B is not guaranteed to identify all

paths with negative reduced costs. Algorithm B, therefore, serves as an intermediate step

that helps us identify some negative reduced cost pairings in a very short computational

time. However, if it is unable to find any such pairings, then we revert to the full imple-

mentation of the dominance algorithm (named Algorithm A) to perform a comprehensive

search for negative reduced cost pairings. In our computational experiments, we find that

in most of the iterations, Algorithm B is able to identify enough variables with negative

reduced costs and add them to the RMP’s column pool, thus requiring us to implement

Algorithm A much more sparingly and hence speeding up the pricing problem solution

process dramatically. The two dominance algorithms are presented below.

Algorithm A This is a dominance algorithm with an exact implementation, similar to that

described by Irnich and Desaulniers [72], wherein only a path starting with

the same crew base can dominate another path.

Algorithm B This is a dominance algorithm with an implementation similar to that de-

scribed by Irnich and Desaulniers [72] except that a path starting with either

the same or a different crew base can dominate another path.

The exact set of labels used by Algorithm A in our robust crew-pairing im-

plementation is as follows. Note that Algorithm B uses all but the last label

listed:

1. The number of duties covered so far by the path

2. The total flying time so far in the current duty of the path

3. The total elapsed time so far in the current duty of the path

4. A constant multiple (ζ) of the total elapsed time so far in the path minus

the sum of the dual contributions of all flights included so far in the path

149



5. The total flying time so far in the current duty plus the sum of the costs of

the previous duties in the path minus the sum of the dual contributions of

all flights included so far in the path

6. The minimum guaranteed pay of the current duty plus the sum of the costs

of the previous duties in the path minus the sum of the dual contributions

of all flights included so far in the path

7. A constant multiple of (ε) of the total elapsed time so far in the current

duty plus the sum of the costs of the previous duties in the path minus the

sum of the dual contributions of all flights included so far in the path

8. Crew base (the starting point) of the path

A.2 Local Search Heuristic for the Calibration Problem

We describe the local search heuristic used to solve our calibration problem. It is as follows.

Algorithm 2 Multi-phase solution algorithm
1: Initialization:
2: Set all parameters to zero, i.e., αi = βi = 0, i ∈ {1, 2, 3, 4} and γi ∈ {5, 6}.
3: while If parameter values got updated in the last iteration do
4: for i = 1, 2, 3, 4 do
5: Perform local grid-search by varying (αi, βi) values to minimize

∑6
i=1 |F x̂(i)−

F x(i)|. Update (αi, βi) values.
6: end for
7: for i = 5, 6 do
8: Perform local grid-search by varying γi values to minimize

∑6
i=1 |F x̂(i) −

F x(i)|. Update γi values.
9: end for

10: end while
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A.3 Data Preprocessing Steps

Preprocessing consisted of two major steps. The first step was to get aircraft tail numbers

for all flights in the crew scheduling samples by matching each flight in the sample with

exactly one flight in the AOTP database. This is performed by matching the departure

airport, arrival airport, scheduled departure time, scheduled arrival time and the airline

code. We are able to match around 95% of all flights in the airline crew scheduling samples.

The second preprocessing step was data filtering to account for the limitations of the

AOTP database. Because tail number information is missing for some flights in the AOTP,

we use, as input to our models, only those flights for which the tail number is present

in the AOTP database. Since only domestic flights information is provided in the ATOP,

we removed all international flights from our crew scheduling sample as well. Typically,

cockpit crews are assigned to operate aircraft belonging to only one fleet family within a

given pairing. Indeed, almost all the crew pairings in our confidential crew scheduling data

contained flights operated by a single fleet family. We eliminated the few crew pairings (and

their corresponding flights) which cut across multiple fleet families in our crew schedule

data. As a result, the crew pairing problem can be considered separately for each fleet

family. For the regional carrier, we used the first week of March 2014 as our calibration

dataset and the first week of April 2014 as the validation dataset. For the network legacy

carrier, we used the first week of January 2014 as our calibration dataset and the first

week of one month in each quarter, namely, February 2014, April 2014, July 2014, and

October 2013, as our validation datasets. We also eliminated all crew pairings (and all

flights in those crew pairings) such that at least one flight in that crew pairing was already

removed for any of the reasons mentioned above. Overall, this resulted in the removal of

approximately 15-20% of all crew pairings and approximately 10-15% of all flights in our

network legacy carrier crew schedule sample across different time periods in the sample.

Also, it resulted in the removal of approximately 10-15% of all our crew pairings and

approximately 10-15% of all flights in our regional carrier crew schedule sample across
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different time periods in the sample.
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Appendix B

Supporting Material for Chapter 4

B.1 Detailed Formulation of Constraints (4.11)-(4.20)

In this appendix, we provide functional expressions of constraints (4.11)-(4.20). The nu-

merical calibration of these expressions is detailed in Section 4.4.1 and in Appendices B.2,

B.3, B.4 and B.5.

Ride-hailing Fare: rhfare = frhfare(ratio
R, tra)

Recall that tras,tt denotes the travel time of ride-hailing vehicles taking road segment s

and departing in traffic timeslot tt and that ratioRod,p,tt is the fraction who use travel path p

of all ride-hailing providers serving a passenger on OD pair (o, d) and starting in service in

traffic timeslot tt. choosing path p in traffic timeslot tt. The ride-hailing fare is given by:

rhfareod,tt =
∑
p∈Pod

ratioRod,p,tt ×min

Pmin, Surgett ×

Ptime ×
∑
s∈SN p

tras,tt + Pdist ×
∑
s∈SN p

LEs


, ∀(o, d) ∈ Q, tt ∈ T T (B.1)

In this equation, LEs denotes the length of road segment s, Pmin denotes the minimum

fare of each trip, Pdist denotes the unit price per unit of distance, Ptime denotes the unit price

per unit of time, and Surgett denotes the surge pricing multiplier in traffic timeslot tt.
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Public Transit Waiting Time: w = fWaitPT (x)

For each itinerary i, the waiting time wi is given as follows:

wi =
SlotDur

2×
∑

v∈V xv,gi,ti
+ TRi, ∀i ∈ Iall (B.2)

Here, SlotDur denotes the duration of each transit timeslot, gi is the first line of itinerary

i, ti is its departure timeslot, and TRi is the transfer time between consecutive lines in

itinerary i (which is zero for non-connecting itineraries). The first term is the average

waiting time at the first station (its denominator is two times the departure frequency per

transit timeslot) and the second term is the total transfer time at all transfer stations in an

itinerary.

Generalized Travel Cost and Attractiveness Calculations:

tcR = fCostRH(ratioR, tra), aR = fAttrR(tcR, rhfare), tcTR = fCostPT (w),

aTR = fAttrR(tcTR)

The attractiveness calculation consists of the following attributes: walking and waiting

time, in-vehicle time, trip start time, transport mode and trip cost (i.e., fare). Start time is

represented by a set of 0-1 dummy values corresponding to each transit timeslot. Transport

mode is defined by another set of 0-1 dummies, one for each mode: transit, ride-hailing or

the outside option.

We define the attributes of public transit attractiveness, aTR, as follows. The walking

time is computed by multiplying the distance from the trip’s origin to the nearest transit

stop and the distance to the trip’s destination from the nearest transit stop, with an average

walking speed of 3.1 miles/hour. The waiting time wi is given by Equation (B.2). In-

vehicle time can be directly obtained from the corresponding itinerary’s taking transit lines

timetable. The trip fare is obtained from public information (we use a flat fare of $2.75 per

trip in New York City).

We define the attributes of ride-hailing attractiveness, aR, as follows. We assume a
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constant value of the walking and waiting times (equal to 6 minutes). We calculate the in-

vehicle travel time as InV ehicleT imeod,tt =
∑

p∈Pod
(ratioRod,p,tt ×

∑
s∈SN p

tras,tt). The

trip cost is given by Equation (B.1).

Based on these specifications, the attractiveness values aR and aTR are obtained from

Equations (4.25) and (4.26). We provide further details on the calibration of these equations

in Appendix B.3.

As mentioned in the chapter, the ride-hailing and transit fares are internal costs within

the system, they cancel each other out. So the cost to ride-hailing passengers tcRod,h,tt and

the cost to transit passengers tcTRi,h are equal to their utility values excluding the trip fare.

Operating Costs and External Costs:

opeR = fOpeR(tra, ratioR), extR = fExtR(tra, ratioR),opeV = fOpeV (tra), extV =

fExtV (tra)

First, we define the operating cost and the external cost on road segment s in transit

time slot tt (denoted by opes,tt and exts,tt, respectively) by the following piece-wise linear

relationships:

opes,tt = Ôpes(1 + α1 ×max(vcs,tt − V̂ Cs, 0)), ∀s ∈ SN all, tt ∈ T T ′ (B.3)

exts,tt = Êxts(1 + α2 ×max(vcs,tt − V̂ Cs, 0)), ∀s ∈ SN all, tt ∈ T T ′ (B.4)

In these equations, Ôpes is the free-flow operating cost on road segment s (obtained from

the road segment lengthLEs and the free-flow speed), Êxts is the free-flow external cost on

road segment s (obtained from the road segment length LEs, estimates of Carbon Dioxide

emissions per mile, and estimates of the social cost of Carbon Dioxide), and vcs,tt is the

vehicle-to-capacity ratio on road segment s in transit time slot tt at taffic timeslot tt. If

the vehicle-to-capacity ratio exceeds a threshold V̂ Cs, the travel time and resulting costs

increase linearly. We use results from Skabardonis and Dowling [123] and Greenwood

et al. [64] to calibrate α1 and α2.
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We now translate these expressions into the operating costs and external costs of ride-

hailing vehicles and other vehicles on the road. Let us denote by V ehicleNums,tt the

number of vehicles on road segment s. We use the following expressions:

opeRod,tt =
∑
p∈Pod

ratioRod,p,tt ×

 ∑
s∈SN p

opes,tt

 , ∀(o, d) ∈ Q, tt ∈ T T ′ (B.5)

extRod,tt =
∑
p∈Pod

ratioRod,p,tt ×

 ∑
s∈SN p

exts,tt

 , ∀(o, d) ∈ Q, tt ∈ T T ′ (B.6)

opeVs,tt = V ehicleNums,tt × opes,tt, ∀s ∈ SN all, tt ∈ T T ′ (B.7)

extVs,tt = V ehicleNums,tt × exts,tt, ∀s ∈ SN all, tt ∈ T T ′ (B.8)

B.2 Demand Estimation

To estimate total demand for each OD pair, we use the publicly available taxi dataset in

Manhattan to get the taxi demand for each OD pair TaxiDem2013
od,h [49]. From Moss et al.

[101], the number of taxi trips in Manhattan dropped 34.8% from 2013 to 2017 (168.8 mil-

lions to 110.0 million). However, ride-hailing recorded an all time high of 158.0 million

trips in 2017, more than offsetting the decline in taxi trips. We combine the ride-hailing ser-

vice and taxi as one transport mode. So the total demand of each OD pair can be estimated

as follows:

Demod,h = TaxiDem2013
od,h × (110/168)× (1 + (158/110))/(4.62%), (o, d) ∈ Q (B.9)

In Equation (B.9), first, using the taxi demand from 2013 (the latest data we can access),

we get the estimated number of taxi trips in 2017 for each OD pair as TaxiDemod
2013 ×

(110/168). Next, multiplying that number with (1 + (158/110)) we obtain the number of

total passengers combining ride-hailing and taxi passengers. Then, by dividing by the cor-

responding market share of 4.62%, we obtain the total demand, Demod,h, of each market.
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To estimate the traffic volume on each road segment, we get the average speed for each

traffic timeslot and each road segment from Bertsimas et al. [24]; we estimate the number of

vehicles on each road segment at any traffic timeslot through the speed-volume relationship

in Table 4.1.

B.3 Passenger Utility Calibration

Trottenberg [138] provides the market share of each travel mode in New York City in 2017

as follows: Car 32%, Walk 28%, Subway 23%, Bus 8%, Bike 3%, For-Hire Vehicles 3%

and Other 3%. We note that the probability of people switching between driving and not

driving is relatively low given long-term effects like availability of parking, car ownership,

etc. Other is not a precisely defined transportation mode in this report. We therefore include

Walk, Bus and Bike in the definition of our outside option.

The coefficients for walking and waiting time, in-vehicle travel time and trip cost are

obtained from Liu et al. [88]. We calculate the distribution of passengers’ departure time

preferences across the morning rush hours based on the distribution of departure times

in the taxi trip data [49]. We let the utility of outside option be a linear function of the

corresponding market distance. We tune the slope and intercept parameters of this linear

function along with the alternative specific constants for the travel modes to ensure that the

mode shares are similar to the values reported by Trottenberg [138] under the actual transit

schedule in New York City. Table B.1 summarizes all utility coefficients. In particular,

the attributes Travel Start Time and Transport Mode are tuned in our study and all other

attributes’ coefficients in Table B.1 are directly borrowed from Liu et al. [88].

B.4 Definition of Passenger Types

From Trottenberg [138], we first divide the total demand into two types based on trip pur-

pose: time-sensitive and price-sensitive passengers. Time-sensitive passengers are those
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Table B.1: Passenger utility coefficient estimates

Attributes Coefficient

Walking and waiting time -0.032

In-vehicle travel time -0.023

Trip cost -0.074

Transport Mode
Ride-hailing -3.580
Public transit 0
Outside option -0.2

Travel Start Time
5:30-6:45 -0.159
5:45-6:00 -0.159
6:00-6:15 -0.159
6:15-6:30 -0.109
6:30-6:45 -0.159
6:45-7:00 -0.159
7:00-7:15 -0.159
7:15-7:30 -0.109
7:30-7:45 -0.052
7:45-8:00 -0.033
8:00-8:15 -0.015
8:15-8:30 -0.013
8:30-8:45 -0.012
8:45-9:00 0
9:00-9:15 -0.009
9:15-9:30 -0.015
9:30-9:45 -0.036
9:45-10:00 -0.042
10:00-10:15 -0.015
10:15-10:30 -0.013

whose likely trip purposes include commute to work, school, medical visits and business—

which are more sensitive to in-vehicle time, waiting time, transfer time and travel start

time. They account for almost 50% of all trips in New York City [138]. The remaining

50% trips are for other purposes such as shopping, running errands, social visits and recre-

ation which are less sensitive to these time-related attributes but more sensitive to the trip

fare; so they could be classified as Price Sensitive. We use a parameter K to calibrate the
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utility functions of price sensitive and time sensitive passengers. Particularly, time sensitive

passengers are assumed to be willing to pay higher fares in return for more convenience.

We capture this by multiplying by K the original parameters (βRod,h,tt and βTRi,h ) correspond-

ing to Walking and waiting time, In-vehicle travel time and Travel Start time in Table B.1

and by multiplying 1
K

the original parameters of Trip cost in Table B.1. In contrast, price

sensitive passengers have a lower willingness to pay, but are more willing to accept longer

travel times and or less preferred start times. So we capture this by multiplying by 1
K

the

original parameters (βRod,h,tt, β
od
i,h) corresponding to Walking and waiting time, In-vehicle

travel time and Travel start time in Table B.1, and by multiplying by K the original pa-

rameters of Trip cost in Table B.1. In all our computational experiments, we set K = 2 to

differentiate time sensitive passengers and price sensitive passengers.

As mentioned earlier, we obtain the passenger travel start time preferences from the

taxi trip data by Donovan and Work [49]. It shows that the highest demand is during the

8:30-8:45 am timeslot and it tapers on both sides. In order to make the case study more

realistic, we generate passengers belonging to multiple time preference types. Each type

has a preference curve with the exact same shape as the overall taxi trip demand shape,

but the mean is shifted. In particular, we consider three time preference types, with means

separated by 1 hour each. We calculate the percentage of each type to ensure that the com-

bined distribution matches the taxi trip demand pattern. Figure B.1 shows the attractiveness

comparison in multiple passenger types, helping us better understand how the utility pat-

terns differ across the passenger types. Particularly, in Figure B.1a, we fix all other utilities

and only change the starting travel time in multiple passenger types. As expected, each

curve’s highest points match their most preferable starting travel time. For time-sensitive

passengers, the lowest attractiveness value is only 30% of the highest attractiveness value.

In contrast, for price-sensitive passengers, this percentage is about 70%. That means that

the starting travel time has a larger impact on time-sensitive passengers than price-sensitive

passenger. Also Figure B.1b shows that, as the in-vehicle time increases from 5 minutes to
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100 minutes for example, the attractiveness of time-sensitive passengers decreases by 95%

but the corresponding decrease is only 60% for the price-sensitive passengers.

(a) Transit Attractiveness in Travel Start Time (b) Transit Attractiveness in In-vehicle Time

Figure B.1: Attractiveness comparison in multiple passenger types

B.5 Other Parameter Values

Table B.2 reports the other parameters used in the case study.

Table B.2: Other parameters used in the case study

Description Value Unit

Value of Passenger Travel Time 15.6 $/person-hour
Vehicle Occupancy 1.25 persons/vehicle
Walking Speed 3.10 miles/hour
Ride-hailing Passengers’ Average Waiting Time 6.00 min
Transit Fare 2.75 $/person
Transit Train Crew Cost 275.00 $/hour
Transit Train Direct Operating Cost 15.10 $/mile
Minimum Per-Unit Operating Cost 0.1774 $/mile
Vehicle Carbon Dioxide Emission 404 gram/mile
Social Cost of Carbon Dioxide Emissions 105 $/ton
Minimum Fare of a Ride-hailing Trip 7.19 $/trip

Ride-hailing Price Rate
0.66 $/min
1.46 $/mile

From Liu et al. [88], we set the value of time for local commute by car in downstate

New York to $15.6/hour. The average vehicle occupancy (average number of persons per
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vehicle), is equal to 1.25 [22]. We assume that average walking speed is 3.10 miles/hour

[100] and the average waiting time of ride-hailing is 6 minutes [12]. We use the Uber price

calculator [139] to calculate the ride-hailing trip fare: we use the ride-hailing price rate of

$0.66/minute plus $1.46/mile, with a minimum fare per trip of $7.19. Moreover, we apply

the surge multipliers from Korolko et al. [83] to calculate the ride-hailing fares in different

traffic timeslots—in order to account for the dynamic pricing strategies of the ride-hailing

operators. We use the flat fare of $2.75 per trip from the New York City subway. The

parameters for calculating the subway operating costs are obtained from Levy [86].

In our experiments, the only external cost that we consider is the cost of Carbon Dioxide

emissions. We assume that the average vehicle emits 404 grams of Carbon Dioxide per

mile, with a social cost of Carbon Dioxide of $105/metric ton [140].

B.6 Detailed Computational Results

Tables B.3, B.4 and B.5 provide the detailed results of the experiments described in Section

4.4.2 under the “Default”, “Borough” and “Distance” demand distributions, respectively.

The tables report the costs incurred under the actual transit schedule and the optimized tran-

sit schedules for each of the three transit service level requirements (“Miles”,“Frequency”,

and “Neither”). The main observations are threefold. First, the optimized transit schedule

can reduce system-wide costs very significantly—by 1.85% to 2.52%, amounting to mil-

lions of dollars. Second, even with transit regularity constraints that impose a minimum

level of service or a maximum deviation from the existing schedule, the optimized tran-

sit schedule can still reduce system-wide costs by 0.35% to 1.82%. Third, these large cost

reductions are predominantly driven by reductions in the costs to passengers and transporta-

tion operators, without significantly affecting the costs to other vehicles and the emission

costs—leading to the win-win-win outcomes described in Section 4.4.2.
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Table B.3: Computational results under “Default” demand distribution, for all 3 transit
service level scenarios

Actual Miles Frequency Neither

Total Cost ($) 191,101,109 189,982,172 187,607,191 186,289,850
(0.00%) (-0.59%) (-1.83%) (-2.52%)

Total Cost to Passengers ($) 156,363,016 156,378,478 155,674,622 155,519,468
(0.00%) (0.01%) (-0.44%) (-0.54%)

Cost to Transit Passengers ($)
11,066,971 11,567,248 10,117,475 9,049,702

(0.00%) (4.52%) (-8.58%) (-18.23%)

Cost to Ride-hailing Passengers ($)
12,721,316 12,905,459 12,900,545 13,411,437

(0.00%) (1.45%) (1.41%) (5.42%)

Cost to Outside Option Passengers ($)
132,574,729 131,905,771 132,656,602 133,058,329

(0.00%) (-0.50%) (0.06%) (0.36%)

Total Cost to Transit and Ride-hailing Operators ($) 9,747,636 8,613,524 6,942,263 5,765,794
(0.00%) (-11.63%) (-28.78%) (-40.85%)

Cost to Transit Operator ($)
7,251,348 6,495,693 4,829,909 3,610,877
(0.00%) (-10.42%) (-33.39%) (-50.20%)

Cost to Ride-hailing Operator ($)
2,496,288 2,117,831 2,112,354 2,154,917
(0.00%) (-15.16%) (-15.38%) (-13.68%)

Total Cost to Other Vehicles ($) 24,518,187 24,526,509 24,527,013 24,537,134
(0.00%) (0.03%) (0.04%) (0.08%)

Time Cost to Other Vehicles ($)
22,924,836 22,924,692 22,925,196 22,925,616

(0.00%) (0.00%) (0.00%) (0.00%)

Operating Cost to Other Vehicles ($)
1,593,351 1,601,817 1,601,817 1,611,518
(0.00%) (0.53%) (0.53%) (1.14%)

Total Emission Cost ($) 472,270 463,661 463,293 467,454
(0.00%) (-1.82%) (-1.90%) (-1.02%)

Cost of Emissions from Ride-hailing Vehicles ($)
73,124 62,394 62,026 63,757
(0.00%) (-14.67%) (-15.18%) (-12.81%)

Cost of Emissions from Other Vehicles ($)
399,146 401,267 401,267 403,697
(0.00%) (0.53%) (0.53%) (1.14%)

Market Shares
Transit Market Share 37.53% 37.94% 35.77% 34.02%
Ride-hailing Market Share 5.81% 6.04% 6.04% 6.33%
Outside Option Market Share 56.66% 56.02% 58.19% 59.65%

B.7 Path Generation for Empty Ride-hailing Vehicles

We approximate the paths of empty ride-hailing vehicles, while ensuring that empty driving

amounts 69% of the distance driven by the ride-hailing vehicles with passengers. Specifi-

cally, let us consider a path p taken by a passenger-carrying vehicle, and construct an empty

driving path p′. The path p′ ends in the origin of the path p. Moreover, we assume that the

length of path p′ amounts to 69% of the length of path p (i.e., we apply the 69% ratio at

the level of each trip rather than at the aggregate level) and we assume that p′ and p overlap
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Table B.4: Computational results under “Borough” demand distribution, for all 3 transit
service level scenarios

Actual Miles Frequency Neither

Total Cost ($) 255,284,312 254,382,290 252,949,572 250,570,509
(0.00%) (-0.35%) (-0.91%) (-1.85%)

Total Cost to Passengers ($) 220,247,758 219,490,139 219,295,608 218,724,618
(0.00%) (-0.34%) (-0.43%) (-0.69%)

Cost to Transit Passengers ($)
11,079,184 12,115,479 10,919,963 9,951,322

(0.00%) (9.35%) (-1.44%) (-10.18%)

Cost to Ride-hailing Passengers ($)
12,685,063 12,788,175 12,900,484 12,914,974

(0.00%) (0.81%) (1.70%) (1.81%)

Cost to Outside Option Passengers ($)
196,483,511 194,586,486 195,475,162 195,858,322

(0.00%) (-0.97%) (-0.51%) (-0.32%)

Total Cost to Transit and Ride-hailing Operators ($) 10,036,256 9,880,677 8,639,293 6,839,765
(0.00%) (-1.55%) (-13.92%) (-31.85%)

Cost to Transit Operator ($)
7,251,348 6,502,763 5,252,301 4,045,003
(0.00%) (-10.32%) (-27.57%) (-44.42%)

Cost to Ride-hailing Operator ($)
2,784,908 3,377,914 3,386,992 2,794,762
(0.00%) (21.29%) (21.62%) (0.35%)

Total Cost to Other Vehicles ($) 24,517,424 24,512,799 24,515,092 24,522,138
(0.00%) (-0.02%) (-0.01%) (0.02%)

Other Vehicles’ Time Cost ($)
22,925,939 22,926,410 22,926,587 22,926,850

(0.00%) (0.00%) (0.00%) (0.00%)

Other Vehicles’ Operating Cost ($)
1,591,485 1,586,390 1,588,504 1,595,287
(0.00%) (-0.32%) (-0.19%) (0.24%)

Total Emission Cost ($) 482,874 498,674 499,580 483,988
(0.00%) (3.27%) (3.46%) (0.23%)

Cost of Emissions from Ride-hailing Vehicles($)
84,195 101,272 101,648 84,357
(0.00%) (20.28%) (20.73%) (0.19%)

Cost of Emissions from Other Vehicles ($)
398,679 397,402 397,932 399,631
(0.00%) (-0.32%) (-0.19%) (0.24%)

Market Shares
Transit Market Share 35.80% 35.81% 34.27% 32.66%
Ride-hailing Market Share 5.66% 5.55% 5.62% 5.81%
Outside Option Market Share 58.54% 58.64% 60.11% 61.54%

heavily (so that the busy areas for passenger-carrying trips are also the busy areas for empty

trips). The algorithm essentially retraces the path p backward, as much as possible. How-

ever, reverse segments of some parts of path p may not be available in the network (due

to one-way streets, for example). When such segment is encountered, the path p′ chooses

one of the available segment randomly with equal probability. This approximate method is

detailed in Algorithm 3.
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Table B.5: Computational results under “Distance” demand distribution, for all 3 transit
service level scenarios

Actual Miles Frequency Neither

Total Cost ($) 175,497,569 173,951,600 172,504,666 171,067,522
(0.00%) (-0.88%) (-1.71%) (-2.52%)

Total Cost to Passengers ($) 141,685,551 140,882,980 140,669,333 140,428,436
(0.00%) (-0.57%) (-0.72%) (-0.89%)

Cost to Transit Passengers ($)
10,975,221 12,173,868 10,925,188 9,761,367

(0.00%) (10.92%) (-0.46%) (-11.06%)

Cost to Ride-hailing Passengers ($)
11,141,282 11,215,173 11,298,515 11,731,933

(0.00%) (0.66%) (1.41%) (5.30%)

Cost to Outside Option Passengers ($)
119,569,047 117,493,938 118,445,631 118,935,136

(0.00%) (-1.74%) (-0.94%) (-0.53%)

Total Cost to Transit and Ride-hailing Operators ($) 8,833,828 8,088,088 6,851,542 5,640,334
(0.00%) (-8.44%) (-22.44%) (-36.15%)

Cost to Transit Operator ($)
7,251,348 6,501,057 5,255,382 4,001,311
(0.00%) (-10.35%) (-27.53%) (-44.82%)

Cost to Ride-hailing Operator ($)
1,582,480 1,587,031 1,596,160 1,639,023
(0.00%) (0.29%) (0.86%) (3.57%)

Total Cost to Other Vehicles ($) 24,528,097 24,529,939 24,532,194 24,542,732
(0.00%) (0.01%) (0.02%) (0.06%)

Time Cost to Other Vehicles ($)
22,932,078 22,932,291 22,932,490 22,933,009

(0.00%) (0.00%) (0.00%) (0.00%)

Operating Cost to Other Vehicles ($)
1,596,019 1,597,649 1,599,704 1,609,723
(0.00%) (0.10%) (0.23%) (0.86%)

Total Emission Cost ($) 450,092 450,593 451,597 456,020
(0.00%) (0.11%) (0.33%) (1.32%)

Cost of Emissions from Ride-hailing Vehicles ($)
50,278 50,370 50,859 52,773
(0.00%) (0.18%) (1.16%) (4.96%)

Cost of Emissions from Other Vehicles ($)
399,814 400,223 400,738 403,247
(0.00%) (0.10%) (0.23%) (0.86%)

Market Shares
Transit Market Share 34.84% 35.51% 33.90% 32.05%
Ride-hailing Market Share 5.11% 5.15% 5.21% 5.46%
Outside Option Market Share 60.05% 59.34% 60.89% 62.49%
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Algorithm 3 Path Generation for Empty Ride-hailing Vehicle Driving

1: for each ride-hailing path p ∈ Pall do
2: Initialize s := first road segment in path p.
3: Initialize p′ := φ.
4: while s has a road segment s′ in the opposite direction and total length of path p′

is less than 69% of the total length of path p do
5: Add road segment s′ to path p′.
6: Set s := the next road segment in path p.
7: end while
8: Set n := starting node of segment s
9: while total length of path p′ is less than 69% of the total length of path p do

10: Select a segment s′ randomly among all road segments in SN all ending in node
n.

11: Add road segment s′ to path p′.
12: Set n := starting node of segment s′.
13: end while
14: Save path p′ as the prior driving path before picking up passengers and taking path

p.
15: end for
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